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Welcome

Richard C Sorenson
Technical Director, Navy Personnel Research and Development Center

I would like to welcomt everyone to the Navy Personnel Research and Development Center.
We have over thirty participants from the Air Force, Army and Navy, and another dozen or so of
our Center researchers who maintain an interest in artificial neural networks and affiliated research
areas. Both military and academic research communities are represented, covering a broad
spectrum of R&D responsibilities from front-line researchers through R&D managers. Many of
you here today have been acknowledged for your expertise in artificial neural networks and expert
systems.

The first model of neural networks dates back fifty years to 1943; in this sense, conceptual
models actually preceded technology. At that time, Warren McCulloch and Walter Pitts proposed
a neural processing model drawn from information theory, whicb had recently been advanced by
Alan Turing and Claude Shannon. These early pioneers coined tht. term, 'cyberneitics' to define
their new field of interest.

The progress made in the past fifty years is a good example of the interplay involving
technology, knowledge (the cumulative advancement of technologies in several fields which
expanded our understanding of biological m ýchanisms as well as our ability to examine processes
within living organisms), and inquiry (bridging, integrating, and synthesizing). Initially,
technology (in this case vacuum tube computers) lagged human concepts of neural models.
Without sufficient technology, the predominant focus in cybernetics was research on artificial
intelligence (expert systems), as defined by Minsky, Newell, and Simon. As computer capabilities
expanded, including parallel processing, the technology became more aligned with researchers'
thinking. By the early 1980s--just ten years ago--the resurgence of interest had a strong focus on
neural networks in living systems and their emulation with high capacity computers (technology =

Cray parallel processing computers).

There has been a substantial R&D investment in artificial neural networks and related
technologies by the Defense Advanced Research Projects Agency (DARPA) and the Office of
Naval Research (ONR) over the past five years. Applications to manpower, personnel, and training
are specialized. This conference provides us with the opportunity to exchange views on the field
and examine different applications ranging from discovery systems (Scheines; Carnegie Mellon)
through neuroscience (Greg Lewis et al; NPRDC). We'd also like this to be an opportunity to do
some brainstorming on current issues and future directions.

In closing, I'm sure we all stand to gain from the papers being presented. We're also hoping
that during the intermissions and informal lunches, you'll all have opportunities to share
experiences in your fields with one another.
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LEARNING IN ARTIFICIAL NEURAL NETWORKS:

A STATISTICAL PERSPECTIVE

by

Halbert White

August 1989

" The author is indebted to Mark Salmon for helpful comments and references.

This work was supported by National Science Foundation Grant SES-8806990.

3



ABSTRACT

The premise of this article is that learning procedures used to train artificial neural

networks are inherently statistical techniques. It follows that statistical theory tan

provide considerable insight into the properties, advantages and disadvantages of

different network learning methods. We review concepts and analytical results from the

literatures of mathematical statistics, econometrics, systems identification and

optimization theory relevant to the analysis of learning in artificial neural networks.

Because of the considerable variety of available learning procedures and necessary

limitations of space, we cannot provide a comprehensive treatment. Our focus is

primarily on learning procedures for feedforward networks. However, many of the

concepts and issues arising in this frameworic are also quite broadly relevant to other

network learning paradigms. In addition to providing useful insights, the material

reviewed here suggests some potentially useful new training methods for artificial neural

networks.
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1. INTRODUCTION

Readers of this journal*are by and large well aware of the widespread and often

drariiatic successes recently achieved through the application of connectionist modeling

and learning techniques to an impressive variety of pattern recognition, classification,

control and forecasting problems. In many of these cases, success has been achieved by

the now rather simple expedient of appropriately training a hidden layer feedforward

network using some variant of the method of back-propagation (Werbos [1974], Parker

[1982], Rumelhart, et al. (1986]). These successes have stimulated an entire industry

devoted to devising ever new and better variants of back-propagation. Typically, papers

representative of this industry contain some clever heuristics and some more or less

limited experiments demonstrating the advantages of the new and improved methods.

These successes have also encouraged consideration of some important and difficult

questions, such as, "Under what conditions will a given network generalize well?";

"What is meant by generalization?"; "How can one determine an appropriate level of

complexity for a given network?"; "How can one tell when to stop training if the targets

are affected by unmeasurable noise?"

The premise of this paper is that learning procedures used to train artificial neural

networks are inherently statistical techniques. It follows that statistical theory can

provide considerable insight into the properties, advantages and disadvantages of

different network learning methods. The literature of statistics and the related literatures

of systems identification and econometrics can suggest improvements to current

approaches to network learning, as well as useful new approaches. Furthermore, these

fields suggest additional important questions that should be asked in studying network

* Reprinted from Neural Computation, Volume 1, Number 4; Halbert White, "Learning in Artificial Neural

Networks: A Statistical Perspective," by permission of the MIT Press, Cambridge, Massachusetts, Copyright 1989.
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learning, but which have not ye. been clearly formulated or widely appreciated in the

connectionist literature. Examples of such questions are "Under what conditions do the

weights generated by a given learning method converge as the size of the training set

grows and to what do they converge?"; "What is the rate of convergence and how is this

affected by the choice of the learning rate?"; "Can the limiting behavior of the learned

weights be described by some known stochastic process?"; "Is a given hidden unit or

input unit contributing to successful network performance or is it irrelevant?"; "Does a

given learning procedure extract all the available statistical information contained in a

given body of data, or is it statistically ineflTiient?" Answers to these questions are

available from the theory of mathematical statistics; these answers are also relevant to

the questions raised earlier.

The purpose of this article is to review concepts and analytical results from the

literatures of mathematical statistics, systems identification and econometrics relevant to

the analysis of learning in artificial neural networks, with particular attention paid to

material bearing on the answers to the questions just raised. Because of the considerable

variety of available learning procedures and necessary limitations of space, it will not be

possible to provide a comprehensive treatment. Our focus here will be primarily on

learning procedures for feedforward networks. However, many of the concepts and

issues arising in this framework are also quite brv.dly relevant to other network learning

paradigms. We comment on some of these as we proceed.

The plan of this paper is as follows. In Section 2, we show why it is that

mathematical statistics has something to say about network learning. Section 3 discusses

relevant concepts of probability fundamental to the analysis of network learning. In

Section 4, we consider some alternative approaches to network learning and describe the
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statistical properties of these methods. Section 5 provides a review of some recently

obtained results establishing that multilayer feedforward networks are capable of

learning an arbitrary macping; these results apply recent developments in the

nonparametric statistics literature. Section 6 contains a brief summary and some

concludir.- remarks.

2. THE RELEVANCE OF STATISTICS

Suppose we are interested in learning about the relationship between two variables

X and Y, numerical representations of some underlying phenomenon of interest. For

example, X could be measurements on geological attributes of a site, and Y could be a

variable assuming the value one if oil is present and zero otherwise. Alternatively, X

could be measurements of various economic variables at a particular point in time and Y

could be the closing value for the Dow Jones index on the next day. As another example,

X could be the treatment level for an experimental drug in a controlled experiment using

laboratory animals, and Y could be the percentage of the group treated at that level that

benefit from the drug.

Often, a theory exists or can be constructed that describes a hypothesized relation

between X and Y, but the ultimate success or failure of any theory must be determined by

an examination of how well its predictions accord with repeated measurements on the

phenomenon of interest. In other cases, no satisfactory theory exists or can be

constructed because of the comple' ty of the phenomenon and the difficulties of

controlling for difficult to measure influences that are correlated with measurable

influences. Nevertheless, repeated measurements can be obtained on a subset of relevant

variables (i.e. X and Y).
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In either case, the possibility of making repeated measurements allows us to build

up a form of empirical knowledge about the phenomenon of interest. A neural network

is one form in which this empirical knowledge can be encoded.

The relevance of statistical analysis arises as soon as repeated measurements are

made. Suppose we have n measurements or "observations" on X, denoted x ..... x. and n

corresponding observations on Y, denoted y1 ,. ...y, Both X and Y may be vector

quantities, and therefore so will be x, and Y, r = 1L..., n. We suppose that X is of

dimension r x I and Y is of dimension p x I for integers r and p. For notational

convenience, we shall write Z = (X', Y')" and z, = (x;,y')', where a prime denotes vector

(or matrix) transposition. Thus, we have n observations, denoted z' = (z .  z.). We

refer to z" as a "sample", or in connectionist jargon, a "training set." It is convenient to

suppose that the measurement process could be continued indefinitely, in which case we

would obtain a sequence of observations {zJ) = (z, t = 1,2, ... ).

By definition, a statistic is any function of the sequence (zJ. A familiar example of

a statistic is the sample average of observations on Y, n-1 Z> yY, A less familiar

example of a statistic, but one which provides a complete representation of our empirical

knowledge is the sample itself, z' (a matrix-valued statistic). Because the entire sample

is an unwieldly way of representing our empirical knowledge, we can attempt to boil it

down or summarize it in some convenient way, which is why such things as averages and

correlations ("summary statistics") are useful. However, a potentially much more

powerful way of boiling down our empirical knowledge is to convert it into the weights

of a suitable neural network. Because this conversion can only be accomplished as some

function of the sequence (z,1 , the resulting network weights are a (vector-valued)
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statistic. Thus, the process of network learning on a given training set is in fact the

process of computing a particular statistc.

It follows that the analytical tools that describe the behavior of st-'stics generally

can be used to describe the behavior of statistics specifically obtained by some neural

network learning procedure. These behavioral properties all have a fundamental bearing

on the answers to the questions posed in Section 1.

These considerations are quite general. They apply regardless of whether we

consider artificial neurai networks and learning algorithms such as back-propagation or

Kohonen self-organization, or whether we consider biological neural networks and

whatever actual learning mechanisms occur there. Because the latter are largely

unknown, our subsequent focus will be on learning in artificial neural systems. However,

the concepts relevant for examining artificial systems are also relevant for the study of

natural systems.

3. PROBABILISTIC BACKGROUND

3.a Measurements, Probability Laws and Conditional Probability

Consideration of the method by which our measurements are obtained is

fundamental to the analysis of any resulting statistics. It is helpful to distinguish initially

between cases in which we have complete control over the values x, and those cases in

which we do not, and between cases in which y, is determined completely by the values

xt and those cases in which other influences affect the measurement Y,-

Situations in which we have complete control over the values taken by x, occur in

the laboratory when it is possible to set experimental conditions with absolutely perfect
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precision or occur in computer experiments. Situations in which control is not complete

are common; these occur when nature has a hand in generating measurements x,.

Nature's role may be complete, as in the social sciences or meteorology, or it may be

partial, as when our measurements are gathered by stratified sampling of some

population or in an experiment in which, although x, can be measured with absolute

precision, its precise value is determined to some extent by chance.

In either of these situations, it is possible and quite useful to define an

"environmental" probability law p (or simply an "environment") that provides a complete

description of the manner in which the measurements are generated. When nature's role

in determining x, is complete, we can regard x, as a realization of the random variable X,

having probability law g. When the experimenter's control is complete, we can regard p

as describing the relative frequencies with which different values for x, are set. When the

researcher has partial experimental control (but still perfect measurement capability) we

can regard p as embodying the combined influences of both nature and the experimenter,

again determining the relative frequencies with which different values for x, are

observed. Formally, p assigns to every relevant subset of B? a number between zero and

one representing the relative frequency with which x, is observed to belong to that subset.

Now consider the determination of y,. Cases in which y, is determined completely

by x, occur in computer experiments or in physical systems in which every single

influence in the determination of y, can be measured with perfect precision and there is

no inherent uncertainty attaching to y,. For these cases, we can express an exact

functional relationship between x, aw-d y, as

Y, = g(x,)
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for some mapping g :I' -- RP. The function g embodies everything there is to know

about the relationship between y, and x,. It is the mapping g that is the natural object of

interest in this case.

In any situation in which it is not possible to obtain absolutely precise

measurements on every single influence affecting the measurement y, or in which y, is

subject to inherent uncertainty, it is no longer possible to express an exact functional

relationship between x, and Y,. Instead it is possible to express a probabilistic

relationship between x, and Yr. For this, it is appropriate to view x, and y, as a realization

of the jointly distributed random variables X, and Y,. For notational convenience, we

write Z, = (X', Y;)'. Hence Z, is a random vector with r + p components. Just as with Xr,

we can define a joint probability law v that describes the relative frequency of

occurrence of vectors Z,. The law v embodies the environment Ai as well as the

probabilistic relationship between Xt and YF. Because we shall assume that X, and Y, have

the same joint probability law as X and Y, we drop the subscript t whenever convenient.

The probabilistic relationship between X and Y is completely summarized by the

conditional probability law of Y given X, which we denote as r(" I x), i.e.

r(A I x) = P[Y E A I X = x], for any set A in BR. The notation P[Y e A I X = x) is read as

"the probability (P) that Y belongs to (E ) the set A given that ( I ) the random variable X

takes on (=) the value x."

In the case where Y is completely determined by X, e.g. as Y = g(X), we have

P[Y = g(x) I X = x] = y([g(x)] I x) = 1 for all x. (We denote the set consisting of the single

element g(x) as [g(x)].) Otherwise, there is generally no function g such that

y([g(x)] I x) = I for all x.
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Because a proper understanding of the notions just introduced is important for

following the discussion ahead, we shall briefly summarize before proceeding. The

foregoing discussion establishes that a single framework applies to all the different

situations initially distinguished at the beginning of this section. This framework is that

the joint behavior of X and Y is described by a joint probability law v. (True randomness

is allowed, but not required.) This joint behavior can be decomposed into a probability

law #u (the "environment', ' -it describes the behavior (relative frequency of occurrence)

of X, and a conditional probability law y that describes the behavior (relative frequency

of occurrence) of Y given X. In this "probabilistic" context, it is the knowledge of y that is

the natural object of interest, because this function embodies all there is to know about

the relationship of interest, that between X and Y.

The case in which there is an exact functional relationship g is a special case; in this

case, knowledge of y and knowledge of g are equivalent. The relevance of the

probabilistic context is that it applies to a much wider class of phenomena, as the

discussion at the beginning of this section should suggest. Accordingly, from now on we

take y to be the fundamental object of interest in our study of the relationship between X

and Y.

Certain aspects of the conditional probability law y play an important role in

interpreting what it is that is learned by artificial neural networks using standard

techniques. Primary among these is the conditional expectation of Y given X, denoted

E(Y I X). This conditional expectation gives the value of Y that will be realized "on

average", given a particular realization for X. Whenever E(Y I X) exists, it can be

represented solely as a function of X, i.e. g(X) = E(Y I X) for some mapping g :B? .--) BP.

The expected value for Y given that we observe a realization x of X is then g(x). Of

12



course, this value will be correct only "on average." The actual realization of Y will

almost always differ from g(x). We can define a random "expectational error"

e a Y - E(Y I X). Because g(X) = E(Y I X) we can also write

Y = g(X) +e.

By definition of - and by the properties of conditional expectation, it follows that

E(e I X) = 0. That is, the average expectational error given any realization of X is zero.

This contains the previous case of an exact relationship as the special case in which e = 0

for all realizations of X. With a probabilistic relationship, e is non-zero with positive

probability.

An important special case occurs when Y can take on only the values 0 and 1, as is

appropriate for any two-way classification problem. For this case, the conditional

expectation function g also provides the conditional probability that Y = I given any

realization of X, i.e. y'[I] I x) = g(x). Because the conditional probability embodies all

information available about the relationship between X and Y, a knowledge of g provides

complete knowledge about the phenomenon of interest for the classification problem just

as it does in the case of exact determination of Y by X.

This discussion highlights some of the reasons for the theoretical importance of the

conditional expectation function. The reason for its important role in network learning

will become apparent when we subsequently examine specific learning methods.

3.b Objectives of Learning

Although the conditional probability law y is a natural object of interest in the

abstract, learning in neural networks, whether natural or artificial, is not necessarily
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directed in an explicit manner at the discovery of y. Instead, a common goal of network

learning is that the network perform acceptably well (or even optimally) at some specific

task in a specific environment. However, because of the fundamental role played by y,

such performance-based objectives for network learning typically are equivalent or

closely related to methods explicitly directed at the discovery of particular specific

aspects of y. We examine this linkage in this section.

When the relationship between X and Y is of interest, it is often because X is to be

used to predict or explain Y. In such cases, network performance can be measured using

a performance function tr : 1P x 1P -41R. Given a target value y and network output o,

the performance function gives a numerical (real-valued) measure of how well the

network performs as 7r(y, o). It is convenient to normalize 7r so that the bigger 7r(y, o) is,

the worse is the performance.

A frequently encountered performance measure for artificial neural networks is

squared error,

it(y,o)= ly-o 12/2.

Many other choices are possible: wit., - = I (y and o now scalars) we could also take

7t(y,o)= Iy-o I, 7r(y,o)= I y-o lq/q, or ir(y,o) =-[y logo + (l-y)log(1-o)] (for

0 < o < I). Note that in each of these cases 7r(y, o) > 0 and ir(y, o) is minimized if and

only if y = o. Such behavior for ir is often convenient, but is not an absolute requirement;

we might wish to make it measure the profit in dollars made by action o c6 the network

when the environment produces a realization y.

Network output can generally be expressed in terms of an output function mapping

inputs and network weights into network output. Formally, f: B?' x W -- BP, where W is

14



a weight space appropriate to the network architecture embodied in f. We take W to be a

subset of B?-, where s is some integer. The precise form of f is not of particular

importance. Given weights w and inputs x, output is given as o = f(x, w). Given targets y,

network performance is then ir(y,f(x, w)).

For any combination of y and x, and for any choice of weights w, we can now

measure network performance (as ;rIy,f(x, w)]); however, it is generally required that a

network perform well in a range of situations, i.e. for a range of different values for y and

x. One way of making this requirement precise is to require the network to perform well

"on average." Average performance is given mathematically by the (unconditional)

expectation of the random quantity Yr(Yf(X,w)), expressed formally as

,(W) E- J xr (y, f(x, w)) v (dy, dx)

-E[7r(Y,f(X,w))], w e W

We call X, the "expected performance function." Note that it depends only on the weights

w, and not on particular realizations y and x. These have been "averaged out." This

averaging is explicit in the integral representation defining ;L. The integral is a Lebesgue

integral taken over W"+'. The Lebesgue measure v permits integrating either continuous

or discrete measures (or a mixture of the two) over IRP+'. The second expression reflects

the fact that averaging 7r(y,f(x, w)) over the joint distribution of Y and X, i.e. v, gives the

mathematical expectation (E(.)) of the random performance 7r(Y,f(X, w)).

Because we are concerned with artificial networks, we have the potential capability

of selecting weights w that deliver the best possible average performance. In the context

of artificial networks, then, it is sensible to specify that the goal of network learning is to

find a solution to the problem

15



min A(w).

WG W

We denote the solution to this problem w*, the "optimal weights."

The requirement that A represent average performance is imposed above for

concreteness, not out of necessity. We shall continue to use this interpretation, but it

should be realized that A may more generally represent any criterion (e.g. median

performance) relevant in a given context.

To illustrate our earlier remark that choosing a performance measure •r is intimately

related to which aspect of the probabilistic relationship between X and Y is implicitly of

concern, consider the case in which x(y. o) = (y - o)2. Then

A(w) = E([Y -f(X. w)] 2).

Taking g(X) = E(Y I X), we have

A(w) = E([Y- g(X) + g(X)-f(X, w)] 2 )

= E([Y - g(X)]2) + 2 E([g(X) -f(X, w)] [Y - g(X)]) + E([g(X) -f(X, w)]2)

= E([Y - g(X)] 2 ) + E([g(X) -f(X, w)]2).

The final equality holds because E(Eg(X)-f(X,w)][Y-g(X)])= E([g(X)-f(X,w)]je)=

E[E([g(X)-f(X,w)]e IX)]=E[(g(X)-f(X,w))E(elX)]=O by the law of iterated

expectations and the properties of r noted earlier. It follows that w" not only minimizes

A(w), but also minimizes

E([g(X) -f(X, w)]2) = f [g(x) -f(x, w)] 2p(dx).

In other words, w" is the weight vector having the property that f(.,ww) is a mean-

squared error minimizing approximation to the conditional expectation function g. It is
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this aspect of the probabilistic relationship that becomes the focus of interest under the

squared error performance measure.

Note that the environment measure p plays a crucial role here in the determination

of the optimal approximating weights w*. These weights give small errors (on average)

for values of X that are very likely to occur at the cost of larger errors (on average) for

values of X that are unlikely to occur. It follows that the weights w" will not give optimal

performance in an operating environment f#.u. This crucial role holds generally, not

just for the case of squared error.

A similarly crucial role in the determination of w" is played by the performance

function 7r. Weights w* optimal under the choice ir need not be optimal for some other

performance measure r *r. If performance in the operating environment is to be

evaluated using r * 7r (e.g. maximum absolute error instead of mean squared error), then

weights w" will not give optimal operating performance. Consequently, it is of great

importance that r andp be selected so as to reflect accurately the conditions under which

operating performance is to be evaluated. Suboptimal network performance will

generally result otherwise.

By taking the weights w* to be the object of network learning, we automatically

provide a solution to the question of what is meant by "generalization." Weights w"

generalize optimally by construction in the sense that given a random drawing from the

probability law v governing X and Y, network output f(X,w*) has the best average

performance, X(w*). As long as v governs the observed realization, a given random

drawing need not have been "seen" by the network before. On the other hand, if the

realization is drawn from an environment different than that from which the optimal w* is
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obtained, then the network will not generalize as well as it could have in this precise

sense, even if it has "seen" ,he particular realization during training.

Further interpretation of the average performance function is possible. In

particular, put

h(y~x, w) = k. (x, w)-1 exp [-ar(yf(x. w))],

where we assume that k, (x, w) = f exp [-;r(y. f(x. w))] 7(dy I x) is finite. It follows that for

each x and w, h(. ;x, w) is a conditional probability density function on !?P. This can be

viewed as an approximation to the true conditional probability density dy(- I x) of the

conditional probability law y( I x). Taking logarithms gives

log h (y;x, w) - log ko (x, w) -;r(y,f(x, w)).

Thus

(w) = f r (y, f(x, w)) v(dy, dx)

= f t f - log h(y; x. w)y(dy I x)]ug(dx) - f log k. (x, w)A (dx)

= f [flog [dr(y I x) / h(y;x, w)]y(dy I x))p(dx)

- f log k, (x, w).u(dx) - f log dy'(y I x)v(dy, dx).

The term in brackets in the first integral, which we define as

ff(dy: h;x,w)=- log[dy(y I x)/ h(y;x,w)],y(dy I x)

is the Kullback-Leibler Information of h(-; x, w) relative to dy( I x) (Kullback and

Leibler [1951]). This is a fundamental information theoretic measure of how accurate

the conditional density h(.;x, w) is as an approximation to the true conditional density

dr(" I x) (see e.g. Renyi [1961]). Heuristically, ff(dy: h;x, w) measures the information
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theoretic surprise we experience when for given x and w we believe the conditionai

density of Y given X is h(-; x, w) and we are then informed that the conditional density is

in fact dy(" I x). A fundamental theorem is that I(dy: h;x,w)>O for all x and w and that

I(dy: h~x, w) = 0 if and only if dy(y I x) = h(y;xw) for almost all y (under r(. I x)). In

other words, this information measure is never negative, and is zero when (and only

when) h(. ;x, w) is in fact the true conditional density.

Substituting, we have

,L(w) = E(H(dy: h; X, w)) + k I (w),

where k I(w)--f log ko, (x,w)g(dx)-f log dy(y I x)v(dy, dx). in the imponant and

common case where k I (w) is constant as a function of w (i.e. whenever ko (x, w) does not

depend on w ), the average performance function can be interpreted as differing by a

constant from the expected Kullback-Leibler Information of the conditional density

h (.: x, w) =- k, (x, w)- 1 exp [- 7r( ,f(x, w))] relative to the true conditional density d*(" I x).

It follows that the optimal weights w* have a fundamental information theoretic

interpretation, in that they minimize expected Kullback-Leibler Information given the

chosen architecture (embodied by f) and performance measure 7t. Further, when

E(JI(dy: h;X,w*)) = 0 for some w° in W it follows that dy(y I x) = h(y;x,w) a.s.-v and

w" = w'. Thus w* indeed provides complete information on the probabilistic relation

between X and Y if this is possible given f and ir. Further general discussion of the

meaning of Kullback-Leibler Information in a related context is given in White [1989a,

ch. 2-51. Viewing learning as related to Kullback-Leibler Information in this way

implies that learning is a quasi-maximum likelihood statistical estimation procedure.

White [ 1989a] contains an extensive discussion of this subject.
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It is important to emphasize that none of the discussion in this section depends very

much on the particular neural network architecture under consideration, or even on the

use of a neural network model at all. The foregoing considerations pertain equally well

to any statistical modeling procedure in which the target Y is approximated by f(X, w).

This is the common situation in all of parametric statistics. The role of neural network

modeling is to provide a specific form for the function f. The advantages of neural

network modeling have to do with the virtues associated with such specific forms. We

shall return to this point again later.

In many network paradigms, there may be no particular target, or the target and

input may be the same. Nevertheless, it is often still possible to define a learning

objective function as

,(w) = f l(z, w)v(dz)

where I: JRP÷' x W -ý B? is a given loss function measuring network performance given

weights w (the state of the network) and observables z (the state of the world). The

interpretation of learning now is that the goal of the network is to adjust its state (w) in

such a way as to ninimize the expected loss suffered over the different possible states of

the world (z). In the special case in which targets and inputs are distinguished and ;r is

given as above, we have l(z,w)= r(y,f(x,w)). We shall make use of the general

formulation in terms of loss functions in what follows, although our examples will

typically assume distinct tai gets and inputs.
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4. STATISTICAL PROPERTIES OF LEARNING METHODS

We saw in the previous section that the goal of network learning can be viewed as

finding the solution w* to the optimization problem

mrin (w) = f1(z,w)v(dz). (4.1)
wWE

If the joint probability law v were known, w" could be solved for directly. It is our

ignorance of v that makes learning necessary. It is the nature of the response to this

ignorance that leads to specific learning algorithms. The details of these algorithms

interact with the probability law (call it P) governing the entire sequence {Z,) to

determine the properties of given learning algorithms. It is the role of statistical analysis

to describe these properties. In this section, we describe several possible responses and

the statistical properties of the resulting learning algorithms.

Because we are concerned with artificial neural networks, we are not limited to

learning methods that have biological or cognitive plausibility. Thus, we are free to

consider "artificial" learning methods. To the extent that biological or cognitive

processes or constraints suggest useful approaches to learning (i.e. solving the problem

(4.1)), we are free to adopt them. To the extent that such processes or constraints get in

the way of using an artificial network to encode empirical knowledge, we are free to

dispense with them. As we shall see, basing our approach to learning on the principles of

analytical and computational expediency nevertheless leads us to an appreciation of the

usefulness of such methods as back-propagation, simulated annealing and the genetic

algorithm.
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4.a Learning by Optimizing Performance Over the Sample

Despite our fundamental ignorance of v, our ability to make repeated measurements

on Z = (X, Y) permits us to obtain empirical knowledge about v. Given a sample z"

(recall z" = (z1 .  z,)), a direct sample analog of v, denoted v,,, can be calculated as

v. (C) a (# of times z, belongs C) / n,

where C is any subset of RP ÷'. When n is large, the law of large numbers ensures that

this will be a good approximation to v(C) for any set C. Using this approximation to v, it

is possible to compute an approximation to A as

A. (w) M l(z, w)v,, (dz)

= n- 1  l(z,, w), wE W.
t=I

This is easily recognized as average performance of the network over the sample

(training set). Because this number is readily computed, we can attempt to solve the

problem

min k, (w).

WE W

We denote the solution to this problem as w,. We make no attempt to justify the attempt

to solve this problem on biological or cognitive grounds, for the reasons given above.

Consideration of this problem is helpful, however, because it delivers direct and deep

insights and suggests usefv.l practical learning methods. With this approach, the study of

network learning now reduces to the study of the relationship between w,, and w*.

Before turning to the challenges that arise in attempting to solve this apparently

feasible problem, we must first discuss a number of relevant issues. First, we must

22



recognize that we can in general say nothing about the precise relation between w, and

w*. The problem is that w, is a realization of random variable. The best that we can do

is to make probability statements about the random variable giving rise to w,. To obtain

this random variable, we make use of the random counterpart of v,

ý',(C)-(#of timesZbelongsC)l n, CcIRP'+

to define

n (W) - (z, W n(dz)

=n-1 X I(Zt, w), wE W.
t=1

We then define i,, as the random variable that solves the problem
A

mrin tA (w) = n-1 I(Z,,w). (4.2)
weW t=1

In the special case where 7r(y, o) = (y - 0)2 / 2 we get l(z, w) = (y -f(x, w))2 / 2 and

IA
min ),, (w) = n- I (Y1 -f(X,, w))2 / 2. (4.3)
wWE

This is precisely the problem of nonlinear least squares regression, which has been

extensively analyzed in the econometrics, statistics and systems identification literatures.

We give bome relevant references below.

Thus, the solution wn defined earlier is simply a realization of the random variable

w,,. Consequently, we focus attention on the relationship between the random variable

V,, and the optimal weights w*.
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4.a(i) Large Sample Behavior of iv'

As with any random variable, the behavior of ',, is completely described by its

probability law. In general, this probability law is prohibitively difficult to obtain for a

training set of given size n. However, approximations to this probability law for large n

can be obtained by making use of standard statistical tools, including the law of large

numbers and the central limit theorem.

These approximations reveal that the probability law of -;.,. collapses, i.e. becomes

more and more concentrated, as n increases. The value around which this concentration

occurs is therefore of fundamental importance. This increasing concentration property is

referred to as the property of "consistency." We describe this in more detail below.

The collapse of the probability law of ý,, can be shown to occur at a certain specific

rate. It is possible to offset this collapse by a simple standardization. The approximate

probability law of the standardized random variable is thus stabilized; this probability

law is known as the "limiting distribution" or "asymptotic distribution" of -;,.. The central

limit theorem is fairly generally applicable and ensures that the appropriate

standardization of v^ has approximately a multivariate normal distribution. The

approximation is better the larger is n. We describe this also in somewhat more detail

below.

The fact that the limiting distribution of ;v, is known has deep and far-reaching

implications. In particular, this makes possible formal statistical inference regarding w*.

Because many questions of interest regarding the precise form of the optimal network

architecture can be formulated as formal hypotheses regarding w", these questions can be

resolved to the extent permitted by the available data by calculating some standard and

24



relatively straightforward statistics. To date, the profound significance of this fact has

not been widely appreciated or exploited in the neural network literature. Below, we

discuss some of the possible applications of these methods.

In the statistics literature, an examination of the consistency and limiting

distribution properties of any proposed new statistic is standard. Such analyses reveal

general useful properties and difficulties that are impossible to infer from or substantiate

with Monte Carlo simulations. As the field of neural computation matures, rigorous

analysis of the consistency and limiting distribution properties of any proposed new

learning technique should become as standard as the Monte Carlo studies now prevalent.

The discussion to follow will indicate some of the typical issues involved in such

analyses.

4.a(ii) Notions of Stochastic Convergence

With this preview of where we are headed, let us return to the issue of consistency.

There are three concepts that are directly relevant. The first is the standard concept of

deterministic convergence. Let (a, -= (a,, a2 -...) be a sequence of (non-random) real

variables. We say that a, converges to a, written a. --+ a ( as n -ý *) if there exists a real

number a such that for any (small) e > 0, there exists an integer N, sufficiently large that

I a, - a I <e for all n > N,. We call a the "limit" of {aj.

Next, let {[L j be a sequence of real-valued random variables. We say that ,,

converges to a almost surely -P, written a,, -4 a ( as n --+ -) a.s.-P if P(a/ -* a] = I for

some real number a. That is, the probability of the set of realizations of a,, for which

(deterministic) convergence to a occurs has probability 1. Heuristically, it is possible for

a realization of (,,I} to fail to converge, but it is more likely that all the ink on this page
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will quantum mechanically tunnel to the other side of the page sometime in the next five

femtoseconds. This form of stochastic convergence is known as "strong consistency" or

a.$.

"convergence with probability one" (w.p. 1.). It is also written as L,, - a.

A weaker form of stochastic convergence is convergence "in probability." Again,

let I a, be a sequence of random variables. We say that a, converges to a in probability

(-P), written a, -4 a prob-P if there exists a real number a such that for any (small)

c > 0,P[ I a, -a I <e] -4 1 as n ---> -. Heuristically, the probability that a, will be found

within e of a tends to one as n becomes arbitrarily large. This form of stochastic

convergence is known as "weak consistency." It is implied by strong consistency.

P
Convergence in probability is also written a,, -* a.

Applying these concepts to w., it would be satisfying to establish that

ýv• -+ w a.s.-P, i.e. that t,, is strongly consistent for w*. This is in fact true under

general conditions on 1, W and {Z,) discussed in the econometrics literature by White

[1981, 1982, 1984a, 1989] and Domowitz and White [1982].

It is useful to give a brief description of the underlying heuristics. The basic idea is

that because i,, (w) is an average of random variables (for each fixed w), the law of large

numbers applies (under conditions placed on the probability law P governing {Zj }, and

on I -- see White [1984b, ch. 2]) to ensure that .,,(w) +A(w)a.s.-P. Because v,,

minimizes ,,, and w minimizes I and because ,,, and A are close a.s. -P for n large, then

i',, should be close to w*. This heuristic argument is not complete, but it can be made

complete by ensuring that the convergence of A, to A. is uniform over W (i.e.

sup,,, w I , (w) -A(w) I -• 0 a.s.-P ). For this, it helps to assume that W is a compact set.
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These issues have been thoroughly studied in the econometrics literature under general

conditions. It follows under very general conditions on P, 1 and W that any learning

procedure capable of successfully solving the problem (4.2) delivers learned weights -;.,.

that are arbitrarily close to the optimal weights w° for all n sufficiently large, with

probability one. This provides a definitive answer to the question of what it is that

networks learn when (4.2) is solved.

The limiting distribution of a'. is studied in the same references. The appropriate

formal concept is that of convergence in distribution. Let (a,.) be a sequence of random

variables having distribution functions {F,, (recall F. (a) a P[a.- <a]). We say that ,.

d
converges to F in distribution, written a,, -+ F, if and only if I F. (a) - F(a) I -+ 0 for

every continuity point a of F. This is a very weak convergence condition indeed.

However, it permits approximately accurate probability statements to be made about a,.

using the limiting distribution F in place of the exact distribution F,,. The ability to make

such probability statements is quite useful.

Under fairly general conditions, the central limit theorem can be applied to establish

that the limiting distribution of ' n) is the multivariate normal distribution with

mean vector zero and an s x s covariance matrix (say V°) that can be given a precise

analytic expression. We refer to V* as the "asymptotic covariance matrix" of iv,. The

smaller is this covariance matrix (as measured by, say, tr V* or det V, ) the more tightly

the distribution of a',, is concentrated around w*, with less consequent uncertainty about

the value of w*. It is therefore desirable that V° be small, but there are fundamental

limits on how small V' can be. When two learning methods yield weights i 2,, and i2,,

respectively that are both consistent for w°, one with asymptotic covariance matrix V•,
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and other with asymptotic covariance matrix Vj, the method yielding the smaller

asymptotic covariance matrix is preferable, because that method makes relatively more

"efficient" use of the same sample information. In certain cases, it can be shown that

V* - Vj is a positive semi-definite matrix, in which case it is said that the second method

is "asymptotically efficient" relative to the first method. Thus, study of the limiting

distribution of alternative learning methods can yield insight into the relative desirability

of different learning methods. As a specific example, White [1989b] proves that learning

methods that solve (4.2) for squared error performance are asymptotically efficient

relative to the method of back-propagation. In this sense the method of back-propagation

is statistically inefficient. Kian and White [1989] discuss a modification of back-

propagation that has asymptotic efficiency equivalent to the solution of (4.2).

4.a(iii) Statistical Inference and Network Architecture

Of significant consequence is the fact that the limiting distribution of •,,, can be used

to test hypotheses about w*. Two hypotheses of particular importance in artificial neural

networks are the "irrelevant input hypothesis" and the "irrelevant hidden unit hypothesis."

The irrelevant input hypothesis states that a given input or group of inputs is of no value

(as measured by X ) in predicting or explaining the target. The alternative hypothesis is

that the given input or some member of the given group of inputs is indeed of value in

predicting or explaining the target. Similarly, the irrelevant hidden unit hypothesis states

that a given hidden unit or group of hidden units is of no value in predicting or explaining

the target. The alternative hypothesis is that the given hidden unit or some member of

the given group of hidden units is indeed of value in predicting or explaining the target.

Because these hypotheses can generally be expressed as the restriction that particular
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elements of w* are zero (those corresponding to the specified units) and because the

learned weights ýv. are close to w* for large n, the learned weights can be used to provide

emApirical evidence in favor of or in refutation of the hypothesis under consideration.

Under the irrelevant input hypothesis, the corresponding learned weights i';. s,"---'d

be close to zero. The question of how far from zero is too far from zero to be consistent

with the irrelevant input hypothesis can be answered approximately for large n by

making use of the known limiting distribution of 1t,,.

Specifically, the irrelevant input hypothesis can be expressed as Ho : Sw" = 0, where

S is a q x s selection matrix picking out the q elements of w ° hypothesized to be zero

under the irrelevant input hypothesis. The fact that Zn_(ý.-w*) has a limiting

multivariate normal distribution with mean zero and covariance matrix V° implies that

N'n S(v,,-w*) has a limiting multivariate normal distribution with mean zero and

covariance matrix SV* S'. Because the irrelevant input hypothesis implies Sw" = 0, it

follows that '4r SNv,, has a limiting multivariate around distribution with mean zero and

covariance matrix SV" S' under the irrelevant input hypothesis H,. From this it follows

that under Ho the random scalar nv',, S'(SV S')-l S2v,, has a limiting chi-squared

distribution with q degrees of freedom (42).

A realization of this random variable cannot be computed, because although an

analytical expression for V* is available, a knowledge of the probability law P is required

for its numerical evaluation. Fortunately, an estimator of V" can be constructed that is

weakly consistent, i.e. there exists V, such that V,, -- V" prob-P. Replacing V° with its

weakly consistent estimator V'^ has no effect on the limiting distribution of the statistic

just given. Thus
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d 2n,,+Ss(SV.S )-'Swv s+,

under the irrelevant input hypothesis H,. The probability distribution of the irrelevant

input test statistic n,,' S'(SV, S')-l Siv, is therefore well approximated for large n by the

X1 distribution when the irrelevant input hypothesis is true. Under the alternative

hypothesis H0 : Sw* *•0, the irrelevant input test statistic tends to infinity with probability

one. It follows that the procedure of failing to reject H, whenever nv S (SV, S )-I S,,

fails to exceed the 1 -a percentile of the zr distribution (for some typically small value

of a, say a = 0.5 ora = 0.01 ) leads to incorrect rejection of the irrelevant input hypothesis

with (small) probability approximately equal or less than a. As n becomes large the

probability of correctly rejecting the irrelevant input hypothesis with this procedure tends

to one (the test is "consistent"). This procedure is an application of standard techniques

of statistical inference. It allows us to determine whether specific input(s) are irrelevant,

to the extent permitted by the sample evidence by rontrolling the probability of

incorrectly rejecting H.. This approach has obvious applications in investigating the

appropriateness of given network architectures.

The irrelevant hidden unit hypothesis is of exactly the same form, i.e. HM : Sw 0,

except that now the q x s selection matrix S picks out weights associated with q hidden

units hypothesized to be irrelevant. As before, the alternative is H, :Sw" * 0. Similar

reasoning can be used to develop an irrelevant hidden unit test statistic. However there

are some rather interesting difficulties in the development of the limiting distribution of

',, under H,. Problems arise because when H, is true, the optimal weights from input

units to the irrelevant hidden unit(s) are not locally unique -- they have no effect on

network output: This problem is known in the statistics literature as that in which
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"nuisance parameters are identified only under the alternative hypothesis." Limiting

distributions for such cases have been studied by Davies [1977, 1987]; the analysis is

complicated. The resulting distributions are generally not z. However, certain

techniques can be adopted to avoid these difficulties, yielding a z. statistic for testing the

irrelevant hidden unit hypothesis. One such test is described by White [1989c], and its

properties are investigated by Lee, White and Granger [1989].

Statistical inference plays a fundamental role in modern scientific research. The

techniques just described permit application of the methods of statistical inference to

questions regarding the precise form of optimal artificial neural network architectures.

4.a(iv) Methods for Optimizing Performance Over the Sample

Now that we have at least superficially explored the consistency and limiting

distribution properties of solutions to (4.2) and the implications of these properties, we

may consider how (4.2) might be solved in practical situations. In general, we seek a

global solution to what is typically a highly nonlinear optimization problem. Such

problems are the general concern of an entire sub-area of mathematics, optimization

theory. Rinnooy Kan, Boender and Timmer [1985) (RBT) give a survey of results from

this literature that are directly relevant to finding the solution to (4.2), as well as

describing a new procedure, "multi-level single linkage" which appears to provide

performance superior to a variety of now standard methods. Before describing this

technique, however, we first consider two methods for solving (4.2) that are relatively

familiar to the neural computation community: the method of simulated annealing and

the genetic algorithm. Both of these methods for function optimization have been

applied in the present context or in related contexts. Because of their relative familiarity,
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we shall not go into great detail regarding the specifics of implementation, but indicate

general features of these methods.

The method of simulated annealing proceeds by viewing i. as giving an "energy

landscape" over the state space W. It is desired to settle into a low energy state, the

lowest being w,. Different annealing strategies arise depending upon whether W is a

finite set or is a continuum, but the basic idea is to start at some initial weight vector and

compute the "energy" (value of i. ) for a nearby weight vector. If energy is iov, , :, move

to the new vector. If energy is higher, move to the new vector with a probability

controlled by the annealing "temperature" schedule. By setting the temperature high

initially, one may escape from local minima. The "temperature" is lowered at an

appropriate rate so as to control the probability of jumping away from relatively good

minima. Hajek [1985, 1988] gives a useful survey and some theorems establishing

conditions under which simulated annealing ultimately delivers the solution i'. to (4.2).

See also Davis [19871.

It is useful to recognize that such procedures leave us twice removed from the

optimal weights w*, in a certain sense. If we could find v, we would be once removed,

effectively by sampling variation, although the results described above show that this

sampling variation gets averaged out as n becomes large. However, finding iv. is only

guaranteed in the limit of the annealing process. Because the annealing process must be

terminated at some finite time, we are once removed from i'., and therefore twice

removed from w*. The most we can hope for is that weights, say ,, delivered by

annealing after some finite time, will be close to i', in the sense that A,, (i',) is close to

,, (ý,,). These weights could be far apart in standard metrics on W, but this is not of
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major concern: our primary concern is with measured average performance.

The statistical properties of i4, are not necessarily identical to those of WA.

However, if ;w. delivers a local minimum of i. we can view ;,, as minimizing i. over

some restriction of W, and regain similar statistical properties with respect to this

restriction. We discuss finding a local minimum in more detail below.

The genetic algorithm (Holland [1975]) proceeds by viewing the opposite of i., i.e.

-,,, as a fitness function and w as a "DNA vector." Use of the genetic algorithm for

function optimization is treated by Goldberg [1989] (see also Davis [1987]). The basic

idea is to begin with a population of N "individuals" with "DNA" w, i = 1. .... N. The

fitness of each individual is evaluated as -,A (w'). Individuals mate with other

individuals, exchanging "genetic material" in a manner bearing certain analogies to the

exchange of DNA in biological organisms. More fit individuals are more likely to mate;

further, the exchange of "DNA" is governed by "genetic operators" such as "cross-over"

and "mutation" that allow for local search (mutation) and distant search (cross-over) in W.

The result is a new generation of individuals with new "DNA." The process continues

for many generations. Heuristically, one might expect the optimal individual v, to

emerge from this process as the number of generations becomes large.

To date, there does not appear to be a theoretical result guaranteeing that ý
2 ,V is

indeed produced in the limit; such a result would be highly desirable. Nevertheless, the

method does seem to perform reasonably well in applications. Typically, the method

delivers weights in the neighborhood of an optimum relatively quickly, but can be very

slow to find the optimum itself, owing to its simple method of local search. To aid the

production of a highly fit individual in the present context, it is desirable to "clone" the
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most fit individual from one generation to the next. Also, it appears desirable to treat the

elements of w as distinct entities in the cross-over process, with attention also paid to

keeping together "clumps" of hidden units, as these typically collectively encode

information leading to good fitness.

Again, weights produced by the genetic algorithm arc twice removed from w" for

the same reasons as with the method of simulated annealing. The identical comments

apply, especially as regards obtaining a local minimum of i,. for the purpose of

exploiting the statistical properties of the resulting weights.

This discussion of particular learning methods clarifies the relationship between two

separate areas relevant for the analytic investigation of network learning. The first is the

area of statistical analysis, which allows us to study the properties of any procedure that

delivers a solution to (4.2). These properties are fairly well established. The second is

the area of optimization theory, which delivers methods leading to the solution of (4.2).

Such methods present a current challenge; the vast literature of opdimization theory can

be expected to yield a variety of useful methods for attempting to solve (4.2) in specific

applications.

As an example, we describe the multi-level single Tin.kage alSorithm -f R.innooy

Kan, Boender 'nd Timmer [1985]. This method is a variant of the "multi-start" method,

which has three steps:

1.) Draw a weight vector w from the uniform distribution over W.

2.) Carry out a local search starting from w (see below for methods of local search) to

obtain a local minimizer C,,, say.
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3.) If i,. (a.) is the smallest value obtained so far, put ;v,, = i. Return to step 1.

The procedure continues until a stopping criterion is met.

The multi-level single linkage technique is designed to improve the efficiency of the

multi-start procedure by performing local search for a minimum, starting not from every

point drawn in step 1, but only from points satisfying certain criteria. Specifically, draw

a sample of weight vectors w, i = 1 ... , N from the uniform distribution over W and

initiate local search from each weight, unless: (1) w' is too close to the boundary of W

(within a distance r > 0, in RBT's notation); (2) w' is too close to a previously identified

local minimizer (within a distance v > 0 in RBT's notation); or (3) there is a weight

vector wi, j * i, such that A. (w.) < A,, (w1 ) and wJ is close to w' (within a distance rN > 0

in RBT's notation). Timmer [ 1984] proves that if rN is chosen appropriately and tends to

zero as N --4 -, then any local minimum i,, (and consequently global minimum ;v. ) will

be found within a finite number of iterations, with probability 1. The reader is referred to

Timmer [ 1984] for further discussion.

Methods capable of solving (4.2) locally are themselves the subject of a voluminous

literature. We merely sketch the outline of some gradient descent techniques that are

straightforward to implement. Specifically, if A,, is differentiable in w, an iteration can be

constructed as

_ (k+1) W(k) (k)W, =wV -r/1 H(.k) Vi,,( (w k=0,1,2_...

M(k) - (h)

where w,, is the estimate at the kth iteration, wv. is any starting value, r7 k is a positive

step-size parameter, H(,) is an s x s positive definite matrix and V is the gradient operator

with respect to w, so that VA,, is an s x I vector. Different choices for 77k and H )

implement different specific gradient descent methods. A discussion of these and much
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additional relevant material can be found in Ortega and Rheinboldt [1970] and

Rheinboldt [1974]. Note that the sometimes extreme local irregularity ("roughness,"

"ruggedness") of the function i,. over W arising in network learning applications may

require development and use of appropriate modifications to the standard methods.

Wk)
Under appropriate regularity conditions, w,, converges as k - *- to ;v, a vector

such that VA,, (;,,) = 0. These equations are the necessary first order conditions for a

local minimum of A,, interior to W.

Under appropriate conditions, it can be further shown that iv tends to wt, a

parameter vector solving the problem V A(w) = 0. When interchange of derivative and

integral is possible, we have

VA(w) = V I (z, w)v(dz)

= J V 1(z, w)v(dz)

=E(VI•(Z, w)).

Thus, seeking a solution to V A(w) = 0 is the same as seeking a solution to the problem

E(V l(Z, w)) = 0 (4.3)

Because v is unknown, we cannot solve this problem directly. Neei ,heless, the gradient

descent methods just discussed provide one approach to attempting to find such a

solution using available sample information, because V,, (w) = n- 1  _ V l(Z, w).

4.b Learning by Recursive Methods

In 1951, Robbins and Monro [1951] considered the problem of finding a solution to

the problem
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E(m(Z, w)) = Jm(z. w)v(dz) = 0. (4.4)

when the expectation cannot be computed because v is unknown. Instead, error laden

observations on E(m(Z,w)) are given by realizations of the random variables m(Z,,w).

Robbins and Monro [1951] proposed the method of "stochastic approximation" for

finding an approximate solution to (4.4) using the recursion

iv,,= v,,_i-rhm(Zn.£v,,_), n= 1,2...., (4.5)

where iv0 is arbitrary and r1, is a learning rate. Robbins and Monro (1951] studied their

procedure for the case in which w is a scalar, Blum [1954] extended their analysis to the

vector case.

By setting m(z, w) = V l(z, w), we can apply the Robbins-Monro procedure to obtain

an approximate solution to the problem (4.3). The recursion is simply

v.= ,,._j-ij,,VI(Z,,,iv,_ , n=1,2,.... (4.6)

When 7r(y, o) = (y - 0)2 /2, we have

V I(z, w) -Vf(x, w) (y -f(x, w))

so that

w,, =w. 1- +ri7 Vf(XnifVn_)(Y.f-f(XM,,•nl)), n= 1,2,....

This is easily recognized as the method of back-propagation (Werbos [1974], Parker

[1982], Rumelhart, Hinton and Williams [1986]). Thus, the method of back-propagation

can be viewed as an application of the Robbins-Monro [1951] stochastic approximation

procedure to solving the first order conditions for a nonlinear least squares regression

problem.
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The statistical concepts of consistency and limiting distribution are immediately

relevant for studying the behavior of {v,,)}. Results in the statistics and systems

identification literature can be applied directly to investigate the properties of ({.].

White [j1989b] applies results of Ljung [1977] and Walk [1977] to obtain consistency and

limiting distribution results for the method of back-propagation as well as for the

recursion (4.5). In these results, the random variables Z1 ,Z2 ,... are assumed to be

statistically independent. Such an assumption is implausible for the analysis of time

series data, so Kuan and White [1989] apply results of Kushner and Clark [19781 and

Kushner and Huang [1979] to establish consistency and limiting distribution results for

dependent sequences of random variables. An interesting feature of these results is that

they specify conditions on the learning rate q,, that are necessary to ensure the desired

convergence results. In particular, the most rapid convergence occurs when 77, 5 A n-1

for some A < -.

The limiting distribution results of White [1989b] and of Kuan and White [1989]

can be used to test the irrelevant input hypothesis and the irrelevant hidden unit

hypothesis in ways analogous to those discussed earlier. Also of interest is the fact that

the recursion (4.5) can be used to generate modifications of the method of back-

propagation that have improved convergence and statistical efficiency properties. Several

of these are described by Kuan and White [1989].

A fundamental limitation of the recursion (4.6) is that it is not guaranteed to

converge stochastically, and if it does converge, it generally will not converge to a global

solution of (4.1). Under favorable conditions, it may converge to a local solution to (4.1).

Kushner [1987] has studied a modification of (4.6) guaranteed to converge w.p. I to a
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global solution to (4.1) as n l =. His method embodies a form of annealing. The

recursion is

Iý. = •v._i + 77. (V U(Z..•,._i) + C.

where (C.) is a sequence of independent identically distributed Gaussian random

variables. Convergence to a global optimum as n -+ - occurs almost surely, provided

that r/, is proportional to I /log n. This gives very slow convergence.

The discussion of this section has so far related a variety of well-known learning

methods for artificial neural networks to existing methods of statistical estimation. The

statistics literature suggests a variety of additional relevant procedures that to my

knowledge have not yet been proposed as network learning methods. One such

procedure is that of Kiefer and Wolfowitz [1952]. The Kiefer-Wolfowitz procedure and

its variants are useful for situations in which computing V I is difficult or impossible.

Instead of using V 1, use is made of an estimate of V I based on observations on 1.

A particularly convenient variant of the Kiefer-Wolfowitz procedure known as the

"method of random directions" has been analyzed by Kushner and Clark [1978]. To

implement this method, one chooses a sequence of real constants {c, ) and a sequence of

direction vectors Id,) uniformly distributed over the unit sphere in BRS. Weights are

generated by the recursion

v. = W7v._1i - 1. d. (I(Z,1, wn..-1 + c. d.) - I(Z., i'._ -c, d,)) / 2c., n = 1,2, (4.7)

The term d, (I(Z., iv._- + c. d,,) - l(ZA, 'ý. - c. d.)) / 2c. plays the role of V 1(Z., iv_) in the

Robbins-Monro procedure (4.6). Kushner and Clark [1978] give conditions under which

•W -. t a.s. -P, where wt is now a local solution of the problem (4.1).
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By setting I(z, w) - (Y -f(x, w))2 / 2 in (4.7) we obtain a version of back-propagation

that requires no computation of the gradient of the network output function, Vf. Instead,

we rely on a random local exploration of the loss function. This may prove convenient

for training multilayer networks with a large number of hidden layers, as the effort

required to compute the gradient for back-propagation can be large in these cases.

A useful review of recursive estimation methods such as the Robbins-Monro and

Kiefer-Wolfowitz procedures has recently been given by Ruppert [1989]. Much of the

material contained there has direct relevance for learning in artificial neural networks.

4.c Summary

To summarize this section, a large class of learning methods for artificial neural

networks can be viewed as statistical procedures for solving the problems (4,1) or (4.3).

Concepts of stochastic convergence provide an appropriate framework in which to

analyze the properties of these procedures. Existing results in the statistics,

econometrics, systems identification and optimization theory literatures can be applied

directly to describe the properties of network learning methods. These properties can be

exploited to answer questions about optimal network architectures using the tools of

statistical inference. Further, existing methods can suggest useful and novel network

learning procedures, such as the multi-level single linkage algorithm or the Kiefer-

Wolfowitz approach to back-propagation.

5. NONPARAMETRIC ESTIMATION WITH FEEDFORWARD NETWORKS

In all of the foregoing discussion, we have considered learning methods for

networks of fixed complexity. Despite the great flexibility that such networks can afford
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in their input-output response (e.g. in their ability to approximate arbitrary mappings),

they are nevertheless fundamentally limited. In particular, feedforward networks of

fixed complexity will be able to provide only partial approximations to arbitrary

mappings; their performance for especially complicated mappings can be quite poor.

However, it is now well established that hidden layer feedforward networks with as few

as a single hidden layer are capable of arbitrarily accurate approximation to an arbitrary

mapping provided that sufficiently many hidden units are available (see Carroll and

Dickinson [1989], Cybenko [1989], Funahashi [1989], Hecht-Nielsen [1989], Hornik,

Stinchcombe and White [1989a,b] (HSW) and Stinchcombe and White [1989]). It is

natural to ask whether it is possible to devise a learning procedure that can learn an

arbitrarily accurate approximation to an arbitrary mapping. In this section, we review

some recent results showing that this is indeed possible. These results are obtained by

permitting the complexity of the network to grow at an appropriate rate relative to the

size of the available training set.

For concreteness, we assume that our interest centers on learning the conditional

expectation function, which we now denote 0o, so that 0 , (X) = E(Y I X). (We have 0,

corresponding to g in our previous notation.) Other aspects of the conditional

distribution 7 of Y given X can be given a similar treatment.

Because in practice we always have a training set of finite size n and because 0, is

an element of a space of functions (say E) and is generally not an element of a finite

dimensional space, we have essentially no hope of learning 0, in any complete sense

from a sample of fixed finite size. Nevertheless, it is possible to approximate or estimate

e. to some degree of accuracy using a sample of size n, and to construct increasingly

accurate approximations with increasing n. Let a learned approximation to 0, based on a
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training set of size n be denoted i,,. Just as in our discussion of the convergence

properties of learned network weights v,,, we can define appropriate notions of stochastic

convergence for learned approximations 6,,, and it is in terms of this stochastic

convergence that the approximations may become increasingly accurate.

To define the appropriate notions of stochastic convergence, we need a way to

measure distances between different functions belonging to E. A formal way to do this is

to introduce a "metric" p, that is, a real-valued function on 9 x e which has the properties

that p( 1,02) > 0 (non-negativity), P(01,02) =0(2,001) (symmetry) and

p(01,02)5P(01,O3)+P(03,O2) (triangle inequality) for all 01,02,03 in e. When

p(01,02) = 0, we view O1 and 62 as identical. The pair (O,p) is known as a "metric space."

For any function space E there are usually many different possible choices for p.

However, once a suitable metric is specified, we can define stochastic convergence in

terms of the chosen metric. The property of strong (p-) consistency of 6, for 0. holds

when p(,O,,0 ) -+ 0 (as n -- ee) a.s.-P. The property of weak (p-) consistency of 9,. for

6. holds when p(0,,,, 0 )---0 prob-P. Because weak consistency is often easier to

establish, we focus only on weak consistency, and drop the explicit use of the word

"weak."

In a very precise sense, then, a "consistent" learning procedure for 0o is one capable

of generating a sequence of approximations 6, to 0. having the property that

P(0no) --* 0 prob-P, and it is in this sense that such approximations can approximate an

arbitrary function 60 arbitrarily well. Equivalently, the probability that 6. exceeds any

specified level of approximation error relative to 60 as measured by the metric p tends to

zero as the sample size n tends to infinity. Procedures that are not consistent will always
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make errors in classification, recognition, forecasting, or pattern completion (forms of

generalization) that are eventually avoided by a consistent procedure. The only errors

ultimately made by a consistent procedure are the inherently unavoidable errors

(e = Y - 0 (X)) arising from any fundamental randomness or fuzziness in the true relation

between X and Y.

White [1988] uses statistical theory for the "method of sieves" (Grenander [1981],

Geman and Hwang [1982], White and Wooldridge [1989]) to establish that multilayer

feedforward networks can be used to obtain a consistent learning procedure for 0e under

fairly general conditions. The method of sieves is a general approach to nonparametric

estimation in which an object of interest 0o lying in a general (i.e. not necessarily finite

dimensional) space E is approximated using a sequence of parametric models in which

dimensionality of the parameter space grows along with the sample size. The success of

this approach requires the approximating parametric models to be capable of arbitrarily

accurate approximation to elements of ) as the underlying parameter space grows. For

this reason, Fourier series (e.g. Gallant and Nychka [1987]) and spline functions (e.g.

Wahba [1984], Cox [1984]) are commonly used in this context. Because multilayer

feedforward networks have universal approximation properties, they are also suitable for

such use. Without the universal approximation property, attempts at nonparametric

estimation using feedforward networks would be doomed from the outset.

White [1988] considers approximations obtained using single hidden layer

feedforward networks with output functions

q
fq(x, wq)Wo 10 + 1 w f(i'w0j),

j=1

where w- (w0, w) is the s x I (s = q (r + 2) + 1) vector of network weights. There are q
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hidden units. The vector wo contains the input to hidden unit weights, wo a (wo• .. w),d%

Woj-(wojo,w wo-0 .... w 0 )', and the vector w, contains the hidden to output weights

W I (w10-... , Wlq). V is the hidden unit activation function, and i = (,x')'. Note that the

network output function and the weight vector are explicitly indexed by the number of

hidden units, q.

Because the complexity of such networks is indexed solely by q, we construct a

sequence of approximations to 0,, by letting q grow with n at an appropriate rate, and for

given n (hence given q ) selecting connection strengths i,. so that 0, .fr (., t,.) provides

an approximation to the unknown regression function 0, that is the best possible in an

appropriate sense, given the sample information.

To formulate precisely a solution to the problem of finding 9,,, White defines the set

q q r
T(f, q, A)- {a 10 rE:0(.) = ft(., wq), 7, 1WI I wv IA, I w ow0i 1 _<q A.

j=o j=l i--O

This is the set of all single hidden layer feedforward networks with q hidden units having

activation functions Vf, and with connection strengths satisfying a particular restriction on

their sum norm, indexed by A. This last restriction arises from certain technical aspects

of the analysis. A sequence of "sieves" ( ,. (V)] is constructed by specifying sequences

{qn} and [A. ) and setting E),(y) = T(V, q,, A,.), n = 1,2 .... The sieve E. (V) becomes

finer (less escapes) as qn --** and An -- .. For given sequences [ q• ) and f A, ), the

"connectionist sieve estimator" 6,, is defined as a solution to the least squares problem

(appropriate for learning E(Y I X))

min n- [Y _-O(X,)]2 / 2, n = 1,2, (5.1)0e O. (w) tf=j

Associated with 0n is an estimator t', of dimension sn x I (sn = qn (r + 2) + 1) such that
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0•, (-) =/f'(., ',.). The estimator ýv, is defined as the solution to the problem

min n-' [ [1' -( )] 2, (5.2)
WIN a W. /2 (.2

where W. = [w' Q I W I <An, - I I <q. A. ). Comparing this to the

problem (4.3), we see that the only difference is that (5.2) explicitly references network

complexity which is now a function of the size n of the available body of empirical

evidence.

White [1988] gives precise conditions on (, [Z,) (equivalently, P), V, (q.) and

)A. } that ensure the consistency of i. for 0. in 8 in the sense of the root mean square

metric P2,

P2 (81,02) = (B[0 1 _0212 dg)"'.

Note that the integral is taken with respect to the environment measure u. White's

conditions are straightforward to describe. E is taken to be the space of square integrable

functions on a given compact subset of R?() = (8: K -- 1R f: 02 d < ., K a compact

subset of 1R' }). The probability measure P is assumed to generate identically distributed

random variables Z, having joint probability measure v, with subvector X, having

probability measure p such that g(K) = 1. For simplicity, Y, is also assumed bounded,

although this condition can be relaxed. The probability measure P also governs the

interdependence of Z and Z, t *,r. White considers the case of independent random

variables (appropriate for cross-section samples) and the case of "mixing" random

variables (appropriate for time-series samples). The activation functions V/ are chosen to

be any activation function that permits single hidden layer feedforward networks to

possess the universal approximation property in (E,p 2). For example, V can be sigmoid,
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as shown by HSW.

With these conditions specified, it is possible to derive growth rates for network

complexity ensuring that P2 (,Oo) -+ 0 prob -P, i.e. that single hidden layer feedforward

networks are capable of learning an arbitrarily accurate approximation to an unknown

function, provided that they incitase ii- cowmplexity at an appropriate rate.

In fact, the theoretical results require proper control of both A. and q,,. The

appropriate choice for A,, is proven to be such that A,, • - as n - - and A,, = o(ny'), i.e.,

n-/" A,, -* 0. A standard choice in the sieve estimation literature is a,- log n. The

appropriate choice for q, depends on A, and on the assumed dependence properties of

(Z,}. When (Z,) is an independent sequence, it suffices that q,,-. and

q. A. log (q,, A,.) = o(n); when (Z, ) is a mixing sequence, it suffices that q,, A

log (q,, AJ,) = o(nA). For the choice A,. log n, these conditions permit q.n 1 -a, 0 < 6, < 1,

for the independent case and qn n(1-6)12 for the mixing case. The underlying

justification for these growth rates is quite technical and cannot be given a meaningful

simple explanation; most of the theoretical analysis is devoted to obtaining these rates.

Nevertheless, their purpose is clear: they serve to prevent network complexity from

growing so fast that overfitting results in the limiL

These analytical results show only that network learning of an arbitrarily accurate

approximation of an arbitrary mapping is possible. They do not provide more than very

general guidance on how this can be done, and what guidance they do provide suggests

that such learning will be hard. In particular, the learning method requires solution of

(5.2). Global optimization methods, such as those discussed in Section 4.a(iv) are

appropriate.
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Furthermore, although these results do provide asymptotic guidelines on growth of

network complexity, they say nothing about how to determine adequate network

complexity in any specific application with a given training set of size n. The search for

an appropriate technique for determining network complexity has been the focus of

considerable effort to date (e.g. Rumelhart [1988], Ash [1989], Hirose, Yamashita and

Hijiya [1989]). It is apparent that methods developed by statisticians will prove helpful

in this search. In particular, White [1988] discusses use of the method of cross-validation

(e.g. Stone [1974]) to determine network complexity appropriate for a training set of

given size.

White's analysis does not treat the limiting distribution of b.. This analysis is more

difficult than that associated with i',, because i. has a probability distribution over a

function space. A study of this distribution is of theoretical interest, and may also be of

some practical use. Results of Andrews [19881 may be applicable to obtain the limiting

distributions of linear and nonlinear functionals of 6,,. These would allow construction

of asymptotic confidence intervals for the value of 6o at a given point x0 , for example.

Also of interest are hypothesis tests that will permit inference about the nature of a

given mapping of interest. Specifically, some theory of the phenomenon of interest might

suggest that a particular unknown mapping 0, has a specific linear or nonlinear form, so

that one might formulate the null hypothesis H,, : 0, e e, where e. is some specific class

of functions having the specified property (e.g. affine functions or some specified

parametric family). The alternative is that 0, does not belong to 8), i.e. H, :9 0 8,o.

Tests of this H,, against H,, have been extensively studied in the econometrics literature,

where they are known as specification tests. A specification test using single hidden
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layer feedforward networks has been proposed by White [1989c] and investigated by

Lee, White and Granger [1989]. Most such specification tests are "blind" to certain

alternatives, however, in that they will fail to detect certain departures from H. no matter

how large is n. Recent work of Wooldridge [1989] has exploited the nonparametric

estimation capabilities of series estimators, a special class of sieve estimators, to obtain

specification tests that are "consistent," meaning that they can detect any departure from

H. with probability approaching 1 as n becomes large. It is plausible that Wooldridge's

approach can be applied to the connectionist sieve estimator as well, so that consistent

tests of H,, can be obtained using feedforward networks.

SUMMARY AND CONCLUDING REMARKS

It is the premise of this review that learning methods in artificial neural networks

are sophisticated statistical procedures and that tools developed for the study of statistical

procedures generally can not only yield useful insights into the properties of specific

learning procedures but also suggest valuable improvements in, alternatives to and

generalizations of existing learning procedures. Particularly applicable are asymptotic

analytical methods that describe the behavior of statistics when the size n of the training

set is large. The study of the stochastic convergence properties (consistency, limiting

distribution) of any proposed new learning procedure is strongly recommended, in order

to determine what it is that the network eventually learns and under what specific

conditions. Derivation of the limiting distribution will generally reveal the statistical

efficiency of the new procedure relative to existing procedures and may suggest

modifications capable of improving statistical efficiency. Furthermore, the availability of

the limiting distribution makes possible valid statistical inferences. Such inferences can
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be of great value in the investigation of optimal network architectures in particular

applications. A wealth of applicable theory is already available in the statistics,

econometrics, systems identification and optimization theory literatures.

Among the applications of results already available in these literatures are some

potentily useful learning methods for artificial neural networks based on the multi-level

single linkage and the Kiefer-Wolfowitz procedures, as well as a demonstration of the

usefulness of multilayer feedforward networks for nonparamerric estimation of an

unknown mapping. We have described recent work of White [1988] along these lines,

establishing that arbitrary mappings can indeed be learned using multilayer feedforward

networks.

It is also evident that the field of statistics has much to gain from the connectionist

literature. Analyzing neural network learning procedures poses a host of interesting

theoretical and practical challenges for statistical method; all is not cut and dried. Most

importantly however, neural network models provide a novel, elegant and extremely rich

class of mathematical tools for data analysis. Application of neural network models to

new and existing datasets holds the potential for fundamental advances in empirical

understanding across a broad spectrum of the sciences. To realize these advances,

statistics and neural network modeling must work together, hand in hand.
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Abstract - Neural network techniques offer the abilit. to "discover" complex, interacting, and nonlinear
relations from examples of system or individual behavior. The Armstrong Laborator, has developed an MS
Windows based statistical neural network package (SNNAP) to ease the development of neural network
models and implement results of prior research. SNNAP's network architectures are introduced and its
training, analysis, and visualization facilities are demonstrated on an airman task performance example
problem.

which has recently been developed by the Air Force

INTRODUCTION Armstrong Laboratory

The field of neural networks encompasses a wide range The Statistical Neural Network Analysis Package

of interdisciplinary topics that has recently experienced an (SNNAP) provides a software environment for developing

explosion of both theoretical and applied research. While and analyzing neural network models of decisions, time-

neural networks are often used for optimization problems, series phenomenon, system control, and other input-output
the current research emphasizes the ability of neural relationships. It includes facilities to utilize three different
networks to extract features from examples of system or network architectures, improve model selection, suggest
individual behavior. In this sense, the netwoikb wt u.ý. network pa,.-meters, and visualize model response

for problems typically approached with statistics, surfaces. SNNAP operates in the Windows 3.0 or 3.1

econometrics, clustering, and pattern recognition environment and makes extensive use of the Windows

techniques. Common applications include system control, graphical interface. All software components were
personnel or system flows, time-series projection, decision designed using object oriented techniques and the system
modeling, selection, identification, and fault detection. is implemented in C++. This design allows new network

architectures to be added to the system which will
The major advantage which neural networks bring to automatically take advantage of the existing visualization

these problems is the ability to extract nonlinear relations and other analysis facilities. The next two sections
and interactions among inputs without prior knowledge of provide background on the network architectures and
specific functional forms. In fact, it can be shown that model selection methods implemented in SNNAP. This is
several neural network architectures can support the followed by an example application where SNNAP's
approximation of any continuous relationship (Hornik, facilities are demonstrated on a model of airman
Stinchcomebe, & White, 1989). This allows neural performance. A more extensive coverage of SNNAP's
networks to be used as statistical models of complex facilities along with a more detailed treatment of the
behaviors where linear models are inappropriate or the example application can be found in Wiggins. Borden,
form of the relationships is not known. As demonstrated Engquist, and Looper (1992b).

in prior research (Wiggins, Engquist, and Looper, 1992a),
this ability has allowed the networks to surpass the NETWORK ARCHITECTURES
performance of some established personnel models
developed with more traditional techniques. The heart of any neural network package is the

network architectures which it supports. Neural networks
Despite the obvious advantages, this highly flexible are not a single technique, but a rapidly expanding field

nature of neural networks can itself cause some problems. which has drawn from statistics, pattern recognition,
Neural network models are subject to over-fitting the data neurobiology, statistical mechanics, and other fields.
on which they are trained and this can produce models SNNAP implements three radically different network
which perform very poorly out-of-sample. In addition, it architectures, each of which has been successful in solving
can be difficult to understand or explain the nonlinear and classification and continuous modeling problems. SNNAP
interacting relations captured by a neural network model. allows several networks to be analyzed simultaneously.
Both of these issues are addressed in a software platform These networks can be selected to have similar

architectures but different parameters or can be selected
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from different architectures. More details can be found in or logistic curve (which is computed in Figure 1), although
the references and an overview of all three architectures any monotonic function can be used. SNNAP provides a
is available in Wiggins, Looper, & Engquist (1991). sigmoid, hyperbolic tangent.and linear activation

functions. As a fourth activation function SNNAP
Back Propagation includes product units which are particularly well suited

to capturing interactions among model inputs (see Durbin
Back propagation networks are the most widely and & Rumelhart, 1989)

successfully applied network architecture. They have
been employed in numerous areas and their performance During the course of training, the weights in a
has been compared to many traditional clustering, pattern network are changed to improve the ability of the network
matching, and statistical techniques. The success of back in predicting the observed outputs from the supplied
propagation in other areas of research and model building inputs. The actual weight adjustment is made adaptively
has recently been extended to personnel models (Wiggins by successively presenting each training exemplar to the
et al. 1992a). network and adjusting the weights slightly to improve

performance on that single exemplar. A clever application
Back propagation networks utilize a layer of functions of the chain rule of derivatives (see Rumelhart, Hinton,

to develop relations between the inputs and outputs of a and Williams, 1986) allows the errors at the output layer
model. By using the output of some functions as inputs to be propagated back to the hidden layers. The entire
into other functions, complex functional forms can be process proceeds to minimize the sum of squared errors
generated. Typically these functions are arranged in using gradient descent over the entire network weight
layers, with the first layer receiving its inputs from the space. This adaptive process is performed many times for
inputs to the model and each succeeding layer receiving each observation in the training set and a single pass
inputs from the prior layer. This continues until the output through the training data is termed an epoch. The rate at
layer is reached, and this layer produces the output (or which the weights are adjusted is determined by two
outputs) of the model. When all connections between parameters which must be set by the researcher. SNNAP
functions proceed from input to output, the network is includes a module to "suggest" parameter settings for all
referred to as a feed forward network. If connections are network architectures.
allowed back toward the inputs, the network is referred to
as recurrent. A very simple example, using airmen SNNAP allows both recurrent and feed forward back
reenlistment, is shown in Figure 1. propagation networks to be specified and trained. While

feed forward networks are used for most applications,
recurrent networks are particularly appropriate for time

Back Propagation series data or other problems with a structure in time. The

recurrent connections in the network allow the
Length Of W, development of an internal structure relating current

service 2 ..
(LOS) w. outputs to a representation incorporating both past and

WR= Reenlitment current inputs. The implementation of recurrent back

w." N3 R Reenlis t propagation in SNNAP is a form of the simple recurrent
W. network (SRN) developed by Elman (1990).

(DEP) W

*: R A Probabilistic Neural Networks (PNNs)
Sum S, WA,.+ ,A. dlError: FER.RA-R

Sum: S. - WA- + WA 14 Erro F . E R A second major class of neural networks implemented
A 1

Activation: R W. weight Updae. Aw, . LE,, in SNNAP are based on the estimation of probability
Learning Rats: 0 , L 4-c I density functions (PDFs) from the training data. These

Figure 1. The back propagation method (reenlistment probabilistic neural networks (PNNs) are a direct neural

example). The neurons (N], N2, and N3) are used to representation of the statistically based Parzen windows

model reenlistment probability as a function of LOS and (Parzen, 1962). They are typically applied to classification

number of dependents. problems where one must identify a binary or categorical
outcome (e.g. reenlist vs. separate vs. extend).

The weights or function coefficients are designated by
the W, terms in the figures. Back propagation neurons are The PNN develops PDFs in the input space by placing
usually modeled as simple inner products between the a Gaussian kernel (other kernels are possible) over each

inputs and the neuron weights with the result passed observation in a data set. The kernels are then summed to

through a nonlinear transformaticr (or activation function), produce a PDF for the class. This process can produce

The most common activation transformation is the sigmoid distributions of virtually any shape. The smoothness of
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the distribution is determined by the assumed variance of density of data in any area of input space. This allows the
the kernels placed over each observation. This variance is analyst or researcher to determine if the estimation sample
usually referred to as the smoothing factor for PNNs. The contains sufficient data in an area of the response surface
effect of different smoothing factors on a simple one- which is of interest. If little training data exists in an area
dimensional distribution can be seen in Figure 2. Each of of input space, this reduces the confidence in the projected
the distributions shown in the figure were derived using outcome.
different scaling factors from the same 5 data points.
Computation of the PDFs is covered in detail in Specht Learning Vector Quantization (LVQ)
(1990) and Wiggins et al. (1991).

The learning vector quantization (LVQ) network was
developed by Kohonen (1984) and is also a classification
network. The network has been applied to several

PDF when: contrived problems and has often proven superior to

standard classification techniques (Kohonen, Bama, &
Chrisley, 1988). In several personnel areas, Wiggins et al.
(1992a) found the LVQ to improve on the performance of
regression and probit models but to perform somewhat

worse than back propagation models. In general, the LVQ
F when: requires considerably less training time than back

0.2 propagation and this may be a factor in some applications.

__ __ _The LVQ network bears a strong resemblance to the
K-means clustering algorithm (Duda & Hart, 1973), but
has some features which improve its performance in
classification tasks. The LVQ network operates by

PDF when: generating a set of reference vectors (or neurons) and
C =0.5 placing them in the input space. These reference vectors

_....._ are located at coordinates in the input space and serve as
I iattractors for all exemplars which fall in their

neighborhood. This can be seen in Figure 3, which shows
a simple reenlistment model. In the top of the figure a

PDF when: hypothetical distribution of reenlisters and separators is
O = 1.0 shown. In the bottom of the figure, six reference vectors

are placed in the two dimensional input space (3 to
Obs Obs Ot O O• s reenlistment and 3 to separation). Each reference vector

1 2 3 4 6 has an area of influence within which all exemplars are
Figure 2. Four realizations of a PDF from the same five assigned to the vector. A new exemplar to be projected is
observations. Each realization uses a different smoothing assigned to the nearest reference vector (tsually computed
factor. by the Euclidian distance).

Once a PDF has been generated, a new exemplar can Training in an LVQ network involves determining the
be selected into one of the classes based on the relative locations of the reference vectors in input space. If these
heights of the class PDFs when evaluated at the input locations were chosen to minimize within exemplar input
values for the new exemplar. The class with the highest variance and maximize between exemplar input variance,
density in the neighborhood of the exemplar is selected as LVQ would exactly reproduce the K-means results.
the most likely class for the new exemplar. This process However, LVQ uses the actual classes of the training data
can also involve a priori weights applied to each of the exemplars to determine optimal class separation
classes. SNNAP supports this weighting and uses tne boundaries.
relative proportion of training exemplars in each class as
the default a priori weights. SNNAP also extends the The primary p,"rameter which must be designated with
classification process to produce the probability (based on the LVQ architecture is the number of neurons or
the PDFs) of a new exemplar falling into each of the reference vectors. In general. this number can fluctuate
possible classes. over a fairly wide range and produce reasonable results.

SNNAP's expert system is also configured to suggest a
SNNAP implements a third variant of PNNs which is number of neurons given the problem type and number of

used primarily to support analysis of the other networks. training exemplars.
This network uses the PDF directly to estimate the relative
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example with back propagation training (see Figure 4).

Distribution of Decision Makes Back propagation is an adaptive process and requires many
passes through a data set (epochs) for the network model

R R R R R to complete training. With slow training rates,
SR R R RR R R R R R performance always improves within the training sample.

F R R R R R- PA RR However, if performance is tracked on a hold-out or
RS• sSS S f• %R h validation sample, this performance may degrade

S ~ F R BRRj •, S S S R %R R RR significantly beyond a certain point in training.
S S S SS SRR IRR R8 SS S SS S S%9c Rs s o sss~ ____ ______
S4; S SS SS S FRR R C.525W 58 s S SS SSR S B R R
sss 8 • 5ss s Rk % L__

s ss S S SSa •' E
Unemployment Rate (UNEMP) E 0475

R *•Nr oster S z Separator

I Had-cu Smnct

Resulting Reference Vectors 042
and Their Decision Regions
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Figure 4. In-sample and out-of-sample training paths for
back propagation training.

_- SNNAP provides facilities for saving a copy of a back
propagation network each time a hold-out sample error

Unemployment Rate (UNEMP) basin (such as the one in Figure 4) is encountered during

Figure 3. Decision boundaries formed by an LVQ training. This is an extension to the early stopping

network. Reenlistment decisions are modeled as training heuristics suggested by several researchers
determined by RMC and unemployment. (Wiggins et al, 1992a; Morgan & Bourlard, 1990;

Rumelhart, 1990). In the simple example shown in Figure

MODEL SELECTION 4, the hold-out sample performance (dashed line) has a
single minimum point. In practice. several minimum
"basins" can be encountered and the researcher would

The ability of neural networks to produce complex and usually choose the one with the smallest root mean square
nonlinear relations between model inputs and outputs is error.
one of their greatest assets. However, this ability can
cause problems if the training data set contains a large In addition to improving the predictive capability of
stochastic component (i.e. the data has a large unexplained networks, the performance on a vahidation sample provides
component or is noisy). When confronted with a noisy some measure of confidence when interpreting the
training data set, a neural network has the capability to relations the network displays between model inputs and
"memorize" the noise in the data. Noisy training data outputs. Standard statistics employed with regression
leads to a problem similar to over-fitting with regression models are not applicable to neural networks and the
models containing high order terms. The network's extremely flexible form of network architectures makes in-
performance may be very good in-sample (even flawlessy sample performance statistics meaningless. Hold-out or
however, when confronted with cases not in the training validation sample performance provides a quantitative
data, the network performs very poorly. measure of a network model's predictive ability.

This ability to perform out-of-sample is referred to as AIRMAN PERFORMANCE EXAMPLE
the generalization problem. In all studies performed on
personnel data, some method of preventing over-fit hasbeenabslutey esental n dveloingmodes wichAn analysis of airman performance and its relation tobeen abso lutely essential in develop ing m odels w hich ap i u e nd x er nc w ll b us d t d m o t a e
generalize outside of the training sample (Wiggins et al.. aptitude and experience will be used to demonstrate
1992a). The problem can be easily visualized using an
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problem. The approach will focus on using SNNAP to As a measure of aptitude, all four of the Selector A'd
analyze the problem rather than theoretical, institutional, or scores are used. These four scores are composites of the
data considerations. Several of the facilities available in 10 Armed Services Aptitude Battery (ASVAB) sub-test
SNNAP will be demonstrated with a more complete scores. The number of times an airman had performed the
treatment available in Wiggins et. al. (1992b). All of the "Calibrates Distortion Analyzers" task is used as a measure
remaining figures are screen captures of actual SNNAP of task specific experience. This value was self-reported
displays. For graphical output SNNAP also supports a by the job incumbents when the WTPT was administered.
COPY command to produce windows metafile (WMF) All of the variables used in the analysis are summarized in
vector output for other windows applications. All of Table 1. Complete information on these variables was
SNNAP's facilities and options are accessed using available for 124 of the 140 airman administered the
standard and custom Windows menu bars and dialog WTPT. The basis for model development will be these
boxes. In general, these are very simple operations and 124 observations with I output variable and 5 input
only the results will be shown below, variables.

Following the work of Lance. Hedge. & Alley (1987) Specifying the Variables
and Vance, MacCallum, Coovert, & Hedge (1989) this
example will be based on walk through performance test SNNAP currently accesses standard ASCII files as
(WTPT) results. The WTPT is an objective measure of input. Standard Windows dialog boxes are used to select
performance based on the ability to correctly complete the name of these files and format files describing their
critical steps in performing a specific task. At the Air contents. The user is allowed to choose the variables from
Force Specialty (AFS) level, eight specialties were the data set which are to serve as the inputs (independent
evaluated across several specific tasks with trained variables) and the outputs (dependent variables) for the
observers evaluating the performance of each step within model. As shown in Figure 5, the selected input variables
each task. are those discussed earlier and documented in Table I (the

data set contains additional variables which will be
This example will focus on a single task in AFS 324x0 ignored). SNNAP top level menu bar is also visible in

(Precision Measuring Equipment Specialists). Specifically, this figure. The output variable is the proportion of steps
hands-on performance on the task "Calibrates Distortion correctly completed in the hands-on portion of the
Analyzers" (deFign•ted H645 ) i o-alyzed The proportion "Calibrates Distortion Analyzers" task. Clicking on the
of task steps performed correctly is used as the OK button confirms the selected variables.
performance metric (task H645 involves 30 steps); more
details on the WTPT methodology can be found in Hedge -1 .W
(1984) and Hedge & Teachout (1986). i, "o-, IM. Vi- VA P.

Table 1. • 1

Variables in the Performance Model _F"I

s .variable).

Mp Mechanical selector Al percentile

Ap Administrative se'octor Al percentile_________________________
GpGnrlselector Al percentile Figure S. Selecting the input and output variables for a

Snetwork.
Ep Electronic selector Al percentile

After selecting the model's input and output variables,
h645num Number of times the "Calibrates the user can specifying several types of sub-sampling to

Distortion Analyzers" task was provide for on-line validation of the model's performance.
performed by the job incumbent prior In this case, a one-fifth random sample of the data set wasdesignated as a hold-out sample in all of the analyses

which follow.
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Least Squares Baseline network inputs, separate variables containing the
trznsformed variables can be included only in the OLS

Before proceeding to the development of a neural models. This makes it possible to compare neural netr ork
network model of task performance, an Ordinary Least performance against many existing models completely
Squares (OLS) model will be estimated to provide a within the SNNAP environment.
baseline for the network model. Some form of benchmark
model is extremely important in applying neural networks _ _ _ _ _ _]_

as they provide no intrinsic statistics on their own
Tle: O,•rwy Least Squares Recess4onperformance. Knowledge of the in- and out-of-sample D ra,,-646a VaI- M,,u&v,,m, Va, - Norteperformance of a baseline model can also help in assessing TrA. 4S 3

the progress of neural network training. V-r-*--. I Co-ff. St- Er•-
b64Spar i
bk45toam 0.0017423 0.0012547 1.389

As seen in Figure 6, OLS appears as a "network type" b5 1 0.0031741 0.001-254 1.369
NP 1 0.0031915 0.00 1904 0 .765

when selecting the type of model to be built. SNNAP's 0.p 1 .00019193 0.0011204 0.171GP 0 .0018043 0.0022571 0.799
modular architecture is designed to ease the addition of Ep 0.00o44659 o.0029,0s o.1so

new network types or other analysis techniques such as

logit, discriminant analysis. Even such nonlinear statistical Figure 7 OLS job performance model results,
techniques as classification and regression trees (CART)
or projection pursuit could be added to the system. Once A Back Propagation Model
added, these techniques would automatically have
complete access to SNNAP's analysis and visualization With a baseline model in hand, we can proceed in
facilities. developing a neural network model of task performance.

For this example, the back propagation architecture will be
-" used. To date, this architecture has consistently shown the

.. good performance in personnel research (Wiggins et al.,
1ile: 13240. N645. OLS 1992).

-- w - ... ... To a point, the back propagation model is specified in
Back P,.... ..... ,precisely the same manner as the OLS model just
PNN Ci81.0oF.it developed. However, a special dialog box is used to
PNN C~oniawousm
PNN Denti specify options which are specific to the back propagation

_ _architecture. These options will not be discussed here but
include such items as the number of hidden layers. type of
transfer functions. structure of layer connections, training
rate, momentum factor, and input or output scaling. Some

_ _of these options can be seen in the dialog box shown in
Figure 6. Selecting the Ordinary Least Squares "network" Figure 8.
type".

The results of the OLS analysis can be seen in Figure -

7. As can be seen in the figure, only mechanical aptitude _,ba .. HHi ,Lyet,,e:

(Mp) is statistically significant at the 5% level, with task 4- use ITwo To,,

experience (h645num) just significant at the 10% level
However, the overall relationship between aptitude, . ....... .. ..........
experience, and job performance is rather tenuous in the Lay- VJ7j
OLS model. Lave, l"e S

In all cases, the OLS facility excludes the validation
sample (or samples) from the estimation process. This
behavior will be exploited later to compare OLS and
neural network model performance. It should be noted
that the OLS model need not use the same variables as the ---.- --...... . . ..........
neural network models. In particular, many existing
regression models apply logs. squares, or other Figure 8. Specifying the structure of a back
transformations to their input terms (or output). While it propagation network.

is uncommon to apply such transformations to neural
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For this analysis, instead of "hand specifying" the facilities can be used on any of the saved network states.
network's parameters, the Suggest button will be used to or even on the current state of a network during training.
invoke SNNAP's expert system. SNNAP then queries the
user on one or two topics to insure that its preliminary Comparing Model Performance
analysis of the data is correct. Using this information, the
expert systems generates a default architecture which can The first analysis we will perform involves comparing
be accepted as is or modified by the user. In this case the the training and validation sample performance of the OLS
suggested structure and parameters will be used in the and back propagation (BP) network models. Training and
following analysis. Used in this manner, SNNAP makes validation sample performance statistics are available from
developing neural network models almost as effortless as the main menu bar for any network or regression model.
developing linear regression models. Figure 10 displays the results of computing summary

statistics on the OLS and BP network airman performance
As discussed earlier, back propagation networks are models just developed (statist' s for the OLS model appear

trained to exemplars (or observations) by making multiple above the BP statistics).
passes (epochs) through a data set while making small
adjustments to the network's weights. SNNAP
automatically tracks this training process by reporting on
the root mean square error (RMSE) for both the training Sttistic Trainingl 4 VabdiIon I
and hold-out sample. Figure 9 shows the training path for RMSF 01987 02132
the airman performance data with the bottom line showing Actual Mean 0.8902 0 8853

the RMSE for the training sample and the top line the Network Mean 08902 0,86
RMSE for the hold-out (or validation) sample Actual Std Dev 0.2105 0.2279

Ietwnrl Std. Dev. 0.0692 0,0766
TIC 01555 01687

.... TICB 0.0000 0.0061
top 8.ckP0= 5 15 I TICV 05050 0.5036
CDg TS-. 545 dA V.1 I W. M d .lSO5-,n3 v-r2 N-n..IuIcin r
83.8k, 390 TICC 04950 04903

R squared 0,1082 01247
a2592 f -- ,, , Janus Quotient 0.9444 0.9356

-- 'r 34= , 6o.o Correlation 0.3289 0.3616

1co 00 39,0002 ttsi Training Valdation I

RMSE 0 1757 01992

Actual Mean 0.8902 0,8853
........ Network Mean 0.8894 0.8577

Figure 9. Training and validation (hold-out) sample Actual Sid Dev 0.2105 02279
performance paths during back propagation training. Network Std. 0ev. 0.1030 01533

TIC 0.1372 01577

The validation sample RMSE displays the TICB 00000 00192
TICV 03743 01400

characteristic shape for out-ot-sample performance with TICV 0 27 0 8408

noisy data. At first, the hold-out sample improvements in R squared 03033 02358
performance almost parallel the performance on the Janus Quotient 08347 08742

training data. However. the performance improvements Correlation 0,5545 05226

eventually flatten and RMSE actually begins to rise. This _
upward sloping portion of the validatioti sample training Figure 10. Performance summary statistics for
path can be construed as over-training or over-fitting the the OLS and BP models of airman
training sample data. If the goal of the model is to extract performance.
underlying features from the data or to project job
performance for individual not in the sample, over-training Outside of the means and standard deviations (which
will be contrary to this goal. SNNAP contains facilities to
automatically save the state of the network at points during the statistics shown in Figure 0 are derived from or
training which are likely to produce the best generalization related to the sum of squared prediction errors. Each of
(out-of-sample performance). One of these points is the te to The sm fquared predsction ieno . acothe RM',,'z. TIC, R-squared. Janus Quotient, and

minimum of validation sample RMSE. An interface is Correlai.on are different scaled measures of the error. The
provided to restore the network's state to any of theset r a i i n g p o i t s .A ll f t e a a l y i s a d v s u a i z a i o n J a n u s Q u o t i e n t a n d T I C r e p r e s e n t p e r f e c t p r e d i c t i o n w i t h

training points. All of the analysis and visualization
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zero and larger values represent worse performance (TIC relationship for individuals with typical scores on all
limited by infinity, the Janus Quotient by I). The R- selector Ads is shown in Figure 11.
squared and actual/predizted correlation assume the value
I for models which predict perfectly. Oua•.E10 L-"

As can be seen in the figure, the BP network fits the FD
actual task performance measure better both in the training
and validation samples. The differences can be seen most
plainly in the R-squared and the correlation coefficient
where the scale of these measures improves their 069 I o

resolution in the error range of these models. It is I I
interesting to note that the 0.3616 correlation for the OLS Figure 11. The response of airmen performance to
model on the 25 validation sample observations represents different levels of task experience. OLS model on the left,
an insignificant correlation at the 5% level. Alternately, back propagation model on the right.
the .5226 validation sample correlation for the BP model
is significant at the 5% level. Likewise the validation The two models clearly have a different opinion of the
sample R2 for the BP model is almost twice the R2 for the impact of task experience on task performance. While
OLS model (the in-sample R' is almost triple the OLS both models agree that the proportion of steps correctly
model). Overall, the BP model appears to be capturing completed is 0.87 for those with no task experience and
significantly more structure than the OLS model and this about 1.00 for those with 100 repetitions performing the
structure improves its out-of-sample performance. task, they differ radically in how the 100% performance or

proficiency is obtained. The BP network model postulates
Comparing the actual and network model standard that proficiency on the task improves dramatically early in

deviations, it can be seendtha the OLS model shows much the experience path with complete proficiency obtained
less variability in its predictions than exist in the actual with fewer than 20 repetitions. Alternately, the OLS
data. While still smaller than the actual standard deviation model, restricted by its linear form. postulates a steady
in the H645per variable, the network produces improvement over the entire experience paot. It should be

considerably more variation in its response than the OLS noted that the form suggested by the network is not -&,ell
model. The importance of this can be seen by examining approximated by simple transformations such as logs. It
the TICV or variance component of the TIC. For the OLS is most similar to a functional form requiring nonlinear
model, about 50% of the prediction error, as measured by estimation techniques and which is notoriously unstable to
the TIC can be attributed to lack of variation in the OLS estimate.
predictions. Alternately, only 35% training sample and
14% validation sample TIC error is attributed to lack of
variation in the BP model. The BP model comes much OLS

closer to reproducing the vanability of the performance hS.5num hr45per h645num hs45per
variable.
Viewing the Response Surface 0.000 0.875 0.000 0867

10.000 0,891 10.000 0.976

Having established that the BP model is capturing 20.000 0.907 20.000 0.995

features in the data which allow it to perform considerably 30.000 0.923 30.000 0.998
- 40.000 0.938 40.000 0.999better than a linear regression, it now becomes interesting I

to investigate the structure of the BP model. This can be 50.000 0.954 50.000 0.999

done using the visualization facilities in SNNAP These 60.000 0.970 60.000 0.999

facilities are accessed very simply using standard dialog 70.000 0.986 70.00C 1.000

boxes and the "point-and-click" windows user interface. 80.000 1.002 80.000 1.000
Several options are available on each view (such as log 90.000 1.018 90.000 1.000

scales and selecting viewing regions) but only the results 100.000 1.033 100.000 1.000
will be explored here.

Figure 12. Tabular view of task performance over a range

One of the more interesting aspects of the current of task experience levels. OLS model on the left, BP

models is the sitaple experience/performance profile or network model on the right.

time to proficiency relationship. A graph of job
perforniance vs. task experience will illustrate this on the The differences in the experience/performance training

job training aspect of task performance. A view of this paths can be seen numerically by toggling the views from
Figure I I to tables (see Figure 12). The tables show the
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modeled level of performance for various numbers of task _ _ _-_I_-
experience repetitions prior to testing. Again, both
methods model very similar levels of performance for
those with no task experience (0.872 for OLS and 0.874
for BP). However, they modei decidedly different
pathways to full proficiency. At just over 5 repetitions, 08236

the network model projects almost 95% of !,teps completed
correctly. The OLS model projects over 42 repetitions
required to reach this same performance. .. ...

0 71775

When looking at Figure 11, one should keep in mind 99oo00-0"W" ' . ",..' ."

that the graphs shown are merely a 2-dimensional slice out
of a 6-dimensional response surface. For the OLS model,

this point is irrelevant. The slope of the line shown will
be the same regardless of the value of the other 4 variables

3300000 0 00000
(Mp, Ap, Gp, and Ep). Of course, as the other 4 variables ___

change; the level, or intercept, of the line will of course
vary according to the positive or negative coefficients on
the other 4 variables. The interpretation of the graph -'
produced by the BP network is radically different. The
trained network model may contain features which cause 0 99M : . ,- .5- ..

not just the level, but also the impact of h645num to r
change as the other variables change. For example, the /
shape of the network curve in Figure I I may be different Z "I
for high aptitude airmen and low aptitude airmen. / / I99000ONO/OOO/~ I00

One way of directly visualizing the interactions just 9 0 /00M
discussed is to examine 3-dimensional slices of the
model's response surface. To do this, two input variables - F

are selected instead of the single (task experience) variable Li
from the views shown above. For e'xample, if both task 33 oo 000o0

experience (h645num) and mechanical aptitude (Mp) are Figure 13 The response of airman performance to a
selected as inputs and views are produced for both the range of levels of task experience (h645num) and
OLS and BP models, the results are as shown in Figure mechanical aptitude (Mp). OLS model on top and back
13. propagation on the bottom.

The graph of the OLS model is the expected plane in As with the 2-dimensional views, 3-dimensional views
3-D space. However, the BP network model shows a can be toggled to tables. When the BP network view from
much more interesting structure. Those with very high Figure 13 is toggled, the table shown in Figure 14 results.
mechanical percentile scores require almost no task This table nui.,,rcally shows the effect of task experience
experience to perform the "Calibrates Distortion (h645rum) and mechanical aptitude (Mp) on task
Analyzers" task perfectly. Those with very low performance. Each column of the table represents an
mechanical aptitude require many repetitions to achieve experience/performance profile evaluated at mechanical
perfect performance (this is a task with a very high aptitude percentiles of 20, 40. 60, 80. and 100 respectively.
performance rating across individuals). It can also be seen The table provides precise numerical verification of the
that performance improves dramatically with very few analysis of the surface plot. In many instances, the results
repetitions for those with low and middle Mp percentile of the table can be used directly in other software (such as
scores. While all mechanical percentile groups eventually airman selection or allocation packages) which requires
produce maximum performance (as measured here). , tabular scales as input.
amount of task training required to attain this performance
is directly related to aptitude as measured by mechanical Getting a Different Perspective
percentile. The BP network also sh?-,,'ls a much wider
performance respo-.,e over the same aptitude and SNNAP offers many options for helping to interpret
experience input values: BP model (.58 to 1.00). OLS and analyze the three dimensional graphical views of
model (.72 to 1.08). This is consistent with the higher network response. These options include rotations.
variation seen in :he BP model statistics. scaling. height shading by color, and shading by slope.
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Figure 15 demonstrates an option which is particularly
useful in interpreting the BP network response surface Automatic Surface Scanning
from Figure 13. In this case, only the lines in the Y-axis
direction (task experience) are displayed. Each line now SNNAP contains facilities to automatically search a
represents a specific mechanical percentile score. In response surface and note any distinctive features in the
effect, several of the 2-D graphs shown in the right half of surface. It searches for linear, log-linear, linear-log, and
Figure 11 have been superimposed on the same graph. log-log responses over the entire area for which data is
The only differenc- between each line is the Mp score available. Any of these functional relations which remain

constant over the range of the scan can be identified. Any
.other relation is flagged as unidentified. The scan also

MP searches for interactions among inputs where the impact of
S20.000 40.000 60.000 80.000 100.000 one input on an output depends on the level of another

10,000 1 0.807 0.821 0.903 0.973 0.986 input. As with all other facilities, surface scanning is
20.000 a.age 0.934 0. 491 099 i.9
30.000 01947 0.978 0.996 0.998 0.998 initiated from the main menu bar. Any feature

h 40.000 0.974 0.9"3 0."08 0.9"9 0.99" documented by the surface scan can be quickly realized as
6 50.000 0.988 0.998 0.999 0.999 0.999
4 60.000 .•95 0.999 0.999 0.•99 0.999 a 3-dimensional surface view just by selecting the feature
9 70.oo0 0."8 0.999 1.000 1.ooo 1.ooo and the View option.

Um Figure 16 shows the entire SNNAP work surface with

the results of scanning the BP network model in the
window on the left. The icons at the bottom of the screen

Figure 14. Tabular view of BP Network response surface represent several of the analyses and windows which have
relating task experience (h645num) and mechanical been shown in the figures above. They can be recalled
aptitude (Mp) to task performance. simply by selecting their respective icons.

This graph makes very apparent, the different task The highlighted line in the scan result window
experience-performance profiles of airmen with different indicates that there is an interaction between mechanical
Mp scores. Those with lower scores have heavily curved aptitude (Mp) and administrative aptitude (Ap) in
lines which begin at just under 60% of steps correctly determining job performance. A graph of this interaction
completed and rise rapidly to 100% of steps completed. has been generated by selecting the View button on the
Those airmen with high Mp scores begin their jobs with scan window. An option has been used to darken the
nearly complete proficiency. Several of the other options surface of the graph where the slope is largest to
available can be seen in the superimposed dialog box in emphasize the interaction between the two selector Al
the figure. aptitude measures. As can be seen, lower mechanical

aptitude individuals compensate with higher administrative

-pte.. em,, aptitude to reach the high performance plateau (tl'. light
surface at the top of the graph). However, the curved
surfaces indicate that the two aptitude measures do not
contribute equally and are not additive in determining

100 •performance.

- . .Multi-line Views
05 K Shad& Amm&V to Lliwdtd,

991 C0 thod. A-oo.ngt" to*V Anthr opoen
L,,t• ,,.1 (_,,&l Another analysis component of SNNAP provides

0 Woo Ra,. facilities for analyzing specific cohorts or even individuals0 Vf.o F,-.? ditcto -1p

using the completed models. Figure 17 demonstrates this
3302 OW Shb& by O,,.d,,,.,,o G•d facility using the BP network model of task performance.

0 Sh~d. by HoOM. No 6nd
o Dot.HD, Three groups have been defined: 1) individuals scoring 40

Son all selector AI percentiles. 2) individuals scoring 70 on

all selector Al percentiles. and 3) individuals scoring 95 on

Figure 15. Y-axis wire frame view of BP model. all selector Al percentiles. (Taese are arbitrary groupings

Response of airman performance to task experience and and the SNNAP user is free to define as many groups as
mechanical aptitude. desired.) Given the defined groups. graphs can be made

relating any input to the model's output (or outputs). In
Figure 17, experience/performance profiles are displayed
for each of the three cohorts.
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hi45per - flp. WA4Swiamb intesection between awed,
hG45pew -1(Gw. Upt no uinerectioaina Iesmag spec
lO
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lh645pr tiEp. Spi: no inte,.ection in lneam-leg space Ap
33.00000 19.00000

BP Nebork. OLS Net OLS.
Task Estimates h645per Experience/Performance

Performance Profie

Figure 16 Results of an 'automated surface scan of the BP network model. The mechanical aptitude (Mp) and
administrative aptitude (Ap) interaction has been graphed.

sample was superior to the ability of the regression model.
As seen earlier, aptitude has a significant impact on On the basis of this performance. an analysis of the

initial task performance and the path to task proficiency. network model's response surface revealed several
The form of the expeniencelperformance paths could play interesting features.
an important role in both the selection and technical
training processes. In particular, this relationship would be While this analysis was limited to a single task in one
valuable in determining the optimal level of task training AFS, many of the model's features would have significant
during technical training. As with all other views, tables policy implications if they were applied to selection and
of the graphed values can be obtained, training. The Mp score appears to be a better indicator of

task performance than the selector Al for the career field
-- (Ep). All aptitude groups are capable of excellent task

performance if task specific experience is sufficient. This
-Mt..Ap..GvEp..7G hands-on training is not nearly as important for high Mp

aptitude airmen as it is for those with lower Mp aptitude.
In particular, hands-on training for the 'Calibrates
Distortion Analyzers' task is particularly effective for low
and middle Mp aptitude airmen.

115____190_ __ CONCLUSION

;igue 1. Exerince/erfrmace pofies fr tree SNNAP is an environment for designing. training, and

Fgrure: 17. sexpetrience/erform0,anceprflesfor threeua analyzing neural networks. It provides extensive facilities
grous; ll eletorA~sequl 40 al seectr As eual for visualizing and quantifying the relationships captured
70. nd ll slecor ~s eual95.in a trained neural network. The performance of network

models can be examined both in- and out-of-sample-, and
ANALYSIS SUMMARY this performance can oe compared to regression models

within the SNNAP environment. SNNAP also implements
In this example. the ability of the network model to automated facilities for suggesting network design and

project the performance of airmen not in the training
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analyzing the surface of trained networks. It incorporates 2, Touretzky, D.S. (ed.), San Mateo, CA: Morgan
training heuristics to improve the ability of the network Kaufmann Publishers, 630-637.
models to generalize to exemplars data outside the training Parzen, E., "On Estimation of a Probability Density
data. Function and Mode", Annals of Mathematical

Statistics, vol. 33, pp. 1065-76, 1962.
As demonstrated in the example problem and prior Rumelhart, D.E. (1990). Brain style computation: neural

research (Wiggins et al., 1992), neural networks can reveal networks and connectionist Al (oral presentation). Las
complex nonlinear structure in models of many personnel Vegas TIMS/ORSA Joint National Meeting, May 7-9,
decisions, behaviors, and systems. This structure often 1990.
offers deeper insight into relationships and interactions Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986).
among model determinants. As seen in the task Learning internal representations by error propagation,
performance example and prior research on reenlistment in Parallel distributed processing: explorations in the
rates the nonlinear features developed by networks often microstructure of cognition, D.E. Rumelhart & J.L.
have significant implications for policy decisions. SNNAP Mclelland (Eds.). Cambridge, MA: MIT Press, 213-
provides the capability to easily search for and illustrate 362.
these nonlinear features. The software provides an Specht. D.F. (1990). Probabilistic neural networks.
integrated environment to exploit the capabilities of neural Neural Networks, 3(l), 109-118.
networks in areas where model generalization and a deep Vance, R.J., MacCallum, R.C.. Coovert, M.D., & Hedge,
understanding of the modeled relations is required. J.W. (1989). Construct models of task performance.

Journal of Applied Psychology, 74, 3, 447-455.
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Abstract - Neural network techniques offer the ability to "discover" complex, interacting, and nonlinear relations
from examples of system or individual behavior. When compared with some current statistical models of reenlistment
and other decision behavior, the networks were found to provide substantially better predictive performance. The
reenlistment response surfaces of these neural network models were found to agree with risk and uncertainty theories.

INTRODUCTION models would capture a more complex mapping from the
known characteristics of the airman and the decision

Personnel researchers have applied many modeling and environment onto the reenlist/separate decision.
analytic techniques to quantify the decisions, behaviors,
and flows observed in personnel systems. In recent years Model and Data
artificial neural network kANN) techniques have
demonstrated some impressive results in modeling other The reenlistment model chosen is taken from the
complex systems and in classification tasks (see Caudil, research of Stone et al. (1990). This model is particularly
1990). The success of ANNs in these areas and their appropriate for ANN analysis because it retains as inputs
potential for application to personnel modeling lies the separate components of the pecuniary factors: military
principally in their ability to automatically detect nonlinear compensation (RMC), selective reenlistment bonus (SRB),
and interacting relations among the inputs and output(s) of and civilian wages. The commonly used Average Cost of
a system or observed behavior. Most personnel models Leaving (ACOL) construct, which aggregates all pecuniary
require the determination of a relation between a set of factors into a single ACOL term (Warner & Goldberg,
inputs (known characteristics or conditions) and a target 1983), would prevent an ANN from searching for
variable such as a decision, capability, flow, or stock. potentially more fruitful combinations of pecuniary factors.
Traditional analytic techniques require that the form of this Stone et al. estimated their model over the January
relation be specified by an analyst before the empirical 1975 through March 1982 time period and validated the
estimation of the relationship. ANNs allow more complex resulting equations over the April 1982 through March
relations to be developed directly from observed behaviors 1986 time period. Each of the major Air Force Specialties
of the system or group of individuals under analysis. (AFSs) were modeled using a separate probit equation

estimated on individual level data for all airmen in an AFS
eligible to make a decision during the estimation sample

AIRMAN REENLISTMENT time frame. The resulting probit equations were used to
predict the reenlistment decisions of airmen eligible to

The first personnel area examined is the reenlistment make decisions over the validation sample time frame.
decision of first-term airmen. Specifically, given an The Stone model employs 18 independent variables to
airman eligible to make a reenlistment decision, the capture the economic and policy conditions at the time
airman's demographic characteristics, Air Force policy, each airman made a reenlistment decision. These variables
and economic conditions at the time of the decision; what included pecuniary factors (discounted RMC. civilian
is the likelihood the airman will reenlist? A model wages, SRB, and employment rates), demographic factors
capturing this type of decision process serves as the (race, dependents, marital status, and gender), aptitude,
cornerstone of most personnel inventory models. In experience. and quarter in which the decision was made.
addition, this area serves as a very good test-bed for the
capability of ANNs. As reenlistment has historically been These variables reflect a mature reenlistment model
of critical planning importance to the Air Force, it has with long-term refinement of the model through two
engendered much research activity: Saving et al.(1985); previous revisions. In this sense, it should provide a
Kohler (1988), and others. stringent benchmark against which ANNs can be

While the reenlistment decision has been heavily compared. The data used in developing the ANN models
researched, virtually all of the models tested have been is the same data used by Stone with the current analysis
linear in their input terms. Many researchers have restricted to three 5-digit career fields and two 2-digit
employed logit or probit analysis which imposes a fixed career fields as seen in Table 1.
nonlinearity on the output, but still has no inherent
flexibility. It was hoped that the flexible form of the ANN
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Table 1. AFS Codes and Specialties The freedom of a BP model to fit the inputs to the

AFS I desired output is related to the number of processing
Codea I Desription elements it employs and the number of layers into which

they are organized. Typically the complexity of a BP

272x0 Air Traffic Control solution is constrained by limiting the number of

316xl Missile System Maintenance processing elements in the network to enhance the
generalization capability (or out-of-sample performance) of

426x2 Jet Engine Mechanic a network. Given the large stochastic component in most

30xxx Communications-Electronics Systems personnel data sets, it is important to limit the complexity
of the trained network model. Without some constraint, it

47xxx Vehicle Maintenance is quite likely that a BP network will simply "memorize"
the exemplars without formulating a model which
performs well on individuals or exemplars with new

Modeling Methods combinations of characteristics.
An alternative to limiting the number of processing

Three ANN architectures were compared against the elements, is limiting the amount of training time allowed.
probit results: back propagation (BP; Rumelhart, Hinton, The BP method is adaptive and requires many (often
and Williams, 1986), probabilistic neural network (PNN; thousands) of passes though a data set (epochs) before
Specht, 1990), and learning vector quantization (LVQ; training is complete. Several researchers (Morgan &
Kohonen, 1984). The specifics of these ANN architectures Bourlard, 1990) have suggested stopping the training early
are discussed in detail in the respective references. In as a means of improving out-of-sample generalization,
general, the PNN and LVQ networks utilize local An example of over-training on actual reenlistment
information and smoothing to generate the response data can be seen in Figure 1. Training past the vertical
surface of a model. The importance of BP in our results line in the Figure causes the out-of-sample performance to
and the heuristics required to obtain good performance degrade - the root mean square error (RMSE) increases.
with the architecture necessitates some explanation. This portion of the training path could be categorized as

BP networks utilize layers of simple nonlinear memorizing the noise in the training sample rather than
functions to construct complex functional relations. extracting relevant features. By observing the network's
Despite the fact that these simple functions typically performance on a hold-out sample, on which training is
employ the same nonlinearity (sigmoidal), it can be shown not performed, the training process can be terminated
that the layered architecture is capable of producing any before memorization begins.
continuous nonlinear function (Hornik, Stinchcomebe, &
White, 1989). As shown in Equation 1, the first layer of 0.5
functions receive their inputs directly from the model's Perfo,,mance Over•,ranfn_ mproves in- andI

independent variables. The functions in the ensuing - ou-d-smple

network layers receive their inputs (X,) from the outputs "
T 0476

(Pi) of other functions.

p 1 CHold-out Sample
pix 1- ) -- - -

1 +e -CX, 0426 . .,-

Where: cc Out-of-sample
Pertormance

C is the vector of coefficients or weights. 0376(Stop Training) Training Samp

Xi is the vector of inputs or independent variables for 0 50 100 160 200 250
Training Epoch

observation i
Figure 1. Training path for back propagation.

The weights or coefficients in a BP network are Training sample (solid line) and hold-out sample

determined using a supervised learning procedure in which (dashed line) performance as the number of training

the network adapts to the inputs and desired outputs by passes through the training data set increases.

error correction. The most common error metric involves
minimizing the sum of squared prediction errors over the For personnel research, this early stopping process has

training exemplars. Rumelhart was among several been found to be much more successful than limiting the

researchers who independently developed a direct gradient number of processing elements. The heuristics for

method of propagating an error measure back though a applying early stopping in our research are outlined in

layered network to adjust the function coefficients. Table 2. more computational intensive re-sampling
methods should be able to further improve generalization.
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Table 2. Back Propagation Training Stopping Methods

Method Description

BP Hold Compute the validation sample RMSE alter each training pass through the estimation sample. Choose the amount of
training which produces the smallest RMSE on the validation sample. This is a best case method which cannot be
obtained in practice when the validation sample is unknown at the time the model is developed.

BP 1. Randomly split the original estimation sample into pre-estimation and pre-validation samples.
Tri-sample 2. Train only on the pre-estimation sample while tracking the RMSE on the pre-validation and pre-estimation samples,

3. Save the pre-estimation RMSE at the training point where the pre-validation RMSE is best.
4. Re-train the network on the full estimation sample (both the pre-estimation and pre-validation samples). Stop
training when the RMSE from the full estimation sample matches the one saved in Step 3.

BP Temporal Same as BP Tri-sample except the step 1 split into pre-estimation and pre-vaiidation samples is such that these two
samples cover separate time periods.

Reenlistment Results Table 3. Validation Sample Results
(April 1982 through March 1986)

Following the work of Stone et al., the validation Simulation R' by Modeling Technique
sample was taken to be airmen eligible to make a first-

term reenlistment decision between the dates April, 1982 AFS BP BP Tri- BP
and March 1986. Airmen making a decision between Probit Hold Sample Temporal

January 1975 through March 1982 were used to estimate 272x0 .139 .222 .154 .205

(or train) the probit and ANN models. In each case, the
models resulting from estimation or training on the 316xl -.194 116 -.173 -.035

estimation sample were used to produce predictions of the 426x2 .269 .368 .141 .365
decisions of those airman in the validation sample.

The simulation R2 was employed to measure the 30xxx .155 .244 .241 .316

performance of each model's predictions. An R: of one 47xxx .198 331 .300 .312
implies perfect fit and zero implies a model which

performs no better than the in-sample mean.

• (Predicted, - Actuali)2  AGGREGATE ACCESSION AND RETENTION
R2 =1- i=1 (2)

n A second reenlistment area examined involves
(ActualMean -Actual,)

2  aggregate retention rates modeled simultaneously with
it1 accession rates in a time-series model of personnel flows.

The out-of-sample (validation sample) results of the On an aggregate level, the Air Force personnel system has
probit models are compared with the BP models using the three major flow rates: non-prior service accessions
three training stopping heuristics in Table 3. In virtually (NPS), prior service accessions (PS), and separations. In
all cases, the BP models performed substantially better the current model, only voluntary separations are modeled
than the probit models currently in use. When BP was using the reenlistment rates for first-term (RELRTI) and
able to track performance on the validation sample (BP second-term (RELRT2) airmen. As with prior research on
Hold), it produced the best projections. However, the individual reenlistment, prior aggregate flow models (Ash.
temporal sub-sampling method (BP Temporal) produced Udis, & McNown, 1983; DeVany & Saving, 1982; and
comparable results on all AFSs except 316xI (and did not Stone, Saving, Turner. & Looper 1991) employed
require information on the validation sample). The results regression techniques and structural relations which could
when tracking a random estimation sub-sample (BP Tri- be made linear in the regression inputs.
sample) were more mixed, but still considerably better
than the probit models for all specialties except 426x2. Time-series Model and Data
For the AFSs analyzed, the BP Temporal method
explained 35 to 100% more out-of-sample variation than An aggregate model including the four flow rates
the probit models. Results for the PNN and LVQ described above (NPS, PS, RELRTI. and RELRT2) served
architectures are fell between the probit and BP results in as the basis for developing ANN models. This model was
all specialties and are not reported. taken from the Stone et al. (1991) model which was

extensively tested over out-of-sample time periods and
proved far superior to the rather poor accession results
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obtained by Ash et al. (1983). The model is structural in Table 4. Validation Sample Perlor•ance (FY 19M)
the sense that each dependent variable has an equation Simuation W
with a specified form and set of independent variables. Modeling
Each equation included explanatory terms for relative Technique NPS PS 1st-term 2nWd-trm
military to civilian wages, and unemployment levels. Access Access Reenlist Reenlist
Other factors such as production recruiters, DEP waiting Rate Rate PRats Rate

time, and force level and accession goals were included in OLS .618 378 288 .569
the accession equations. Eligibility and early out factors
were included in the reenlistment equations. The prior GLS -606 .317 .237 323
researchers employed ordinary least squares (OLS) to BP Temporal .487 .633 .683 .736
separately estimate each flow rate equation and generalized
least squares (GLS) to simultaneously estimate the four BP Hold .647 .633 774 .736

equations. BP Inflection 644 .550 772 436

The Stone group estimated the equations using monthly
data over one time period, October 1979 through
September 1987, and validated their performance over two month, the downturn by 2 months, and projects rates in
time periods, January 1979 through October 1979 and excess of 100% for two months. The ANN projection
October 1987 through September 1988 (FY 88). Only the captures both the onset and downturn in the reenlistment
performance on the latter validation sample is examined rate quite accurately.
here, using the earlier validation sample to determine when
training should be stopped.

A training heuristic similar to that used on individual
reenlistment was applied to the aggregate rate models.
Again, the BP Hold method stopped training when
performance was best on the actual validation sample (FY o.

1988). Using the BP Temporal method, training was 0.8

terminated when performance was best on the other ---

temporal hold-out sample (January 1979 to September 0, -

1979). A third training heuristic takes advantage of the 06_

empirical observation that most out-of-sample performance , 0.... D .. J .b .. , ,. May J.. Ju, Au.,g p

optimums occur at a particular point during in-sample to ,m

training (when the second derivative of the in-sample cu,, o0s .o tk.D.. .,o..
RMSE with respect to the amount of training switches
from negative to positive). The second occurrence of such Figure 2. Actual and out-of-sample projections of
an inflection point during training is designated as the BP first-term reenlistment rates for October 1987 through
Inflection network. This method utilizes no information September 1988. OLS and BP (inflection) models.
from outside the training sample.

Time-Series Results ANN Response Surfaces

A comparison of the out-of-sample performance of the Given the ability demonstrated by BP networks in out-
two regression techniques and three variations on BP are of-sample projections, it is interesting to analyze the
presented in Table 4. factors which set the networks apart from the regression

techniques. In particular, the. networks must be capable of
The improvement of the ANN techniques over the capturing relationships between the independent variable3
regression methods was quite marked. In several cases, and aggregate rates not specified in the regression models.
ANN models explained more than twice the out-of-sample Two of the principal inputs in each rate equation are a
variations when compared with the OLS or GLS models. measure of the civilian employment level and relative
Two of the three BP methods also performed slightly military to civilian wage. The impacts of employment and
better on the NPS accession rate. Although not typically relative wages on each of the aggregate rates, as modeled
as strong as the other two BP training methods, BP by the ANNs. are presented in Figures 3 through 6.
Inflection outperformed the regression techniques in all Figure 3 displays two nonlinear but essentially non-
cases except OLS on second-term reenlistment, interacting impacts on first-term reenlistment. Looking

Figure 2 displays the I- r s out-ot-saa.ple projections strictly along the unemployment axis, there are two
of OLS and BP Inflection. While both project well, the relatively flat surfaces where changes in unemployment
OLS projection misses the upswing in reenlistment by a have little effect on the reenlistment rate - below 6%
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unemployment and above 8.5% unemployment. Increases unemployment. Below 5% and especially above 7.5%
in unemployment above 8.5% do not substantially affect unemployment, changes in the unemployment rate have
reenlistment; likewise, decreases below 6% have almost no minimal effect on second-term reenlistment. For second-
impact. term reenlistment, the effective range has shifted down I%

from the transition range observed for first-term
•g reenlistment. This shift would reflect an increased risk-

O0O aversion exhibited by the older group. As expected. the
reenlistment rate for second-term decision makers is
consistently high and relatively unaffected by changes in

GL6 military compensation.

CL6 •The NPS accession rates shown in Figure 5 display
CL two linear. non-interacting but important impacts from the

two variables. This result is to be expected given the
•0,9 relative performance of the ANN and regressions models.

Of the four modeled rates, the out-of-sample results were
.-. most similar for NPS accessions. Essentially, the ANN

has reinforced the original modeler's implicit assumption
that no nonlinear features were present in the NPS
accessions model.

Figure 3. Response of first-term reenlistment rate to
unemployment levels and relative military to civilian 0.10
wage, estimated by the BP Inflect ANN model.

0.46
The ANN modeled relation between relative wages and

first-term reenlistment is also nonlinear but of a different 0.40
form. When military compensation exceeds the civilian
wage by less than 10%, changes which keep the relative 0.36

wage below that level have virtually no effect. As relative
wages move above 1.1 the effect of a given change in 003
relative wage produces significant changes in the
reenlistment rate. The form of these nonlinearities would
have a dramatic impact on the implication of a change in
Air Force compensation policy or shifting economic -
conditions.

Figure 5. Response of the NPS accession rate to
0.9 unemployment levels and relative military to civilian

wage. estimated by the BP Inflect ANN.
0 .8
ar •Prior services accession rates (Fig. 6) demonstrate

considerable interaction between unemployment rate and
relative wage. The unemployment level has a dramatic

a6 impact on how potential PS accessions respond to changes
in relative military to civilian wages. When

, Ounemployment is very low, changes in military
S0,9 compensation have little effect until the military wage

(0,.,-! 'ý`exceeds its civilian counterpart by over 20%. However,
with high unemployment, the impact of military
compensation begins before the relative difference is 10%.
When unemployment is high, the impact of changing
military compensation is much larger and increases faster.

Figure 4. Response of second-term reenlistment rate to This is precisely the type of behavior one would expect
unemployment levels and relative military to civilian from a labor group already entrenched in the work-force.
wage. estimated by the BP Temporal model. High relative wages and changes in those relative wages

have much less effect on those who already hold jobs.
With second-term reenlistment (Fig. 4). a soft threshold Most of these features were poorly approximated by

phenomenon is again seen relating reenlistment and the constant effects constraint of linear models or the
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constant elasticity of log-log models. Although the trained network offers more insight into the structure of
network was relatively unconstrained in its ability to fit the the problem (as seen in Figures 3 - 6). With the proper
training data, the features developed were well behaved tools, the interrelations and features developed by a
and extrapolate smoothly. In each case, the nonlinear and network can be made available as a more realistic model
interacting features "postulated" by the network model of the process being analyzed.
were extremely plausible and often more intuitively A critical concern to any research on personnel or
appealing than constant or constant elasticity effects over other highly stochastic systems involves methods to
the entire range of an input variable, prevent over-fitting. The heuristics employed in this

research were critical to ANN performance and proved
successful at stopping training before the network's ability

0.08 Ito generalize outside the estimation sample declined.
Prevention of over-fitting is an area which has received
limited attention in the literature and many refinements are

_1 O06 possible. In spite of the extremely successful results
obtained in some areas of this study, care must be taken

0.04 "when applying ANNs. Comparisons should always be
t made with more traditional techniques and out-of-sample

2 t //testing performed to ensure the ANN has not obtained a
degenerate response surface.
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Background

Dichotomous criteria are frequently important in the area of military
personnel selection. Sometimes, even though the criterion of interest is
available in continuous form, it is dichotomized for the sake of convenience.
An important example of such a criterion is successful completion of an
enlistee's first tour of obligated service vs. premature attrition. The efficacy
of prediction models for forecasting these dichotomous criteria is a major
technical issue in personnel selection.

Purpose

The purpose of the study described herein was to compare two
alternative approaches to the problem of predicting a dichotomous criterion.
The first approach involved an Ordinary Least-Squares - Linear Regression
(OLS-LIN) model. The second approach involved an Artificial Neural
Network - Back Propagation (ANN-BKP) model. A major objective of the
study was to conduct it in a way that would enable the results to be
generalized to a wide variety of personnel selection situations.

Approach

The authors decided to use computer-simulated data, rather than
empirical data. Use of computer-simulated data had the advantage of

* The opinions expressed in this paper are those of the authors, are not official, and do not

necessarily represent those of the Navy Department or Baylor University.
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allowing relatively precise control over the bivariate distributions (i.e., the
datasets were relatively "well-behaved" in a statistical sense). Use of any
specific empirical dataset(s) would run the risk of involving some
idiosyncratic aspects of a particular dataset, and could have seriously limited
the ability to generalize the results.

The dimensions of the personnel selection situation included in this
study were as follows.

1. Underlying functional form of the relationship between the
predictor and criterion variables (linear vs. curvilinear).

2. Sample size.

3. "Error," or degree to which the individual data points deviated from
the ideal functional form. This was measured by the standard deviation of
the observations around the line portraying the underlying functional form.
In the linear case, this "error" can be transformed to a validity coefficient; i.e.,
the correlation between the predictor and the criterion.

4. Base rate - the proportion of persons considered successful, prior to
introducing a new selection instrument.

5. Selection ratio - the proportion of applicants selected for acceptance,
based upon scores on the new selection instrument.

6. Sample split - the proportional allocation of persons in a total
sample into two subsets: (a) the developmental sample and (b) the evaluation
sample. Each model was developed on the former type sample and evaluated
on the latter type sample.

The degree of error introduced into the distributions was chosen so as
to produce the following validity coefficents in the linear case: .05, .25, .50,
.75, and .90. Errors corresponding to these target validities were used to
simulate total bivariate data distributions for three sample sizes: 100, 500,
and 5000. This was done for each of the two functional forms: linear and
curvilinear. Then, each total sample was divided into two subsets
(development and evaluation), according to the following allocations:
20%-80%, 50%-50%, and 60%-40%.

At this point, there was a bivariate distribution of two continuous
variables for each sample size, for each functional form. The simulated
subjects were rank-ordered on the continuously distributed criterion variable.
Then the continuous criterion was converted into a dichotomous variable
representing success vs. failure, using the base rate under consideration.
This procedure was followed separately for each base rate considered: .05,
.25, .50, and .95.
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An Ordinary Least-Squares - Linear Regression (OLS-LIN) model was
determined for each development sample. These OLS-LIN models were used
to predict criterion scores for each simulated subject in the complementary
evaluation sample. In a similar fashion, an Artificial Neural Network - Back
Propagation (ANN-BKP) model was trained on the simulated subjects in a
development sample, then tested in the complementary evaluation sample.
The ANN-BKP models developed employed the standard back propagation
learning algorithm, with the following architecture: one input node, one
hidden layer containing three hidden nodes, and one output node. The
stopping criterion for training the ANN-BKP models on the development
samples was 100,000 iterations.

A criterion score was estimated for each subject in the evaluation
sample. This predicted criterion score was estimated using the development
sample model. The subjects in the evaluation sample were rank-ordered by
their estimated criterion score. Alternative selection ratios were applied,
dividing the group into selectees and rejectees. The selection ratios employed
were: .05, .25, .75, and .90.

At this point, the actual status of each subject was known for the
predictor side (selection vs. rejection) and the criterion side (success vs.
failure), for each combination of dimensions studied. This two-by-two
situation produced four decision-outcome combinations: (1) correct
acceptances - persons selected who subsequently uccxeeded, (2) erroneous
acceptances - persons accepted who subsequently failed, (3) correct rejections
- persons rejected who would have failed if they had been accepted, and (4)
erroneous rejections - persons who would have succeeded if they had been
accepted. This two-by-two table information was combined into the total
number of correct decisions (correct acceptances and correct rejections) and
the total number of erroneous decisions (erroneous acceptances and
erroneous rejections). Finally, the proportion of correct decisions ("hit rate")
was determined for each evaluation sample.

The hit rate in the evaluation sample was used as the measure of
effectiveness for comparing the OLS-LIN models against the ANN-BKP
models, under each combination of conditions (functional form, sample size,
degree of error from the functional form, base rate, selection ratio, and
development-evaluation sample split). Ordinarily, the statistical procedure
for evaluating these comparisons would have been the appropriate t-test.
However, the data in this study did not meet the assumptions required for
this parametric test. Therefore, nonparametric tests were employed to assess
statistical significance. Specifically, the McNemar test was used when the
number of subjects in an evaluation sample classified differently by the OLS-
LIN and ANN-BKP models was greater than, or equal to, ten. The binomial
test was used when the number of subjects classified differently by the two
procedures was less than ten.
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Results

The two approaches (OLS-LIN and ANN-BKP) exhibited statistically
significant differences (p<.001) in 62 comparisons. All of these significant
differences occurred in the curvilinear cases; no significant differences were
obtained for the two approaches when the underlying functional form was
ý'near. Sixty-one of the 62 significant differences favored the ANN-BKP

model over the OLS-LIN model. Fifty-six of the 62 significant differences
were observed in the largest sample size situation (N=5000), 6 in the next
sample size (N=500), and no significant differences were observed between
the models when the sample size was 100. Significant differences between
the models did not appear related to the other dimensions studied: base
rates, selection ratios, and sample splits.

Discussion

A major advantage of the AN'• -BKP approach is that the researcher
does not need to know the underlying functional form involved in a prediction
problem. In theory, the ANN-BKP model will discover the nature 3f the
underlying functional form. The OLS-LIN model will perform quite well in a
situation where the underlying relationship between the predictor and
criterion is linear, but substantially less well when the underlying functional
form is curvilinear. In actual research, the nature of the underlying
functional relationships between variables is frequently unknown. The
availability of an analytic tool that does not require that knowledge about a
particular dataset would be highly advantageous.

Conclusion

The results of this study are very encouraging. The ANN-BKP models
used in this study employed a single architecture, fixed values for the model
parameters, and a single stopping criterion for training. In a real-life
situation, each of these features would be varied to identify the best settings
for the specific problem being addressed. Despite this lack of fine-tuning, the
ANN-BKP models performed as well as the OLS-LIN models when the
underlying functional form was linear. This is actually somewhat
remarkable since the OLS-LIN is designed for the linear case, and the ANN-
BKP models had to discover the linear relationship. In the curvilinear case,
the ANN-BKP models outperformed the OLS-LIN modcls in 61 of the 62
cases where there was a statistically significant difference (p<.001) between
the models. The ANN-BKP model appears to be a very powerful prediction
tool that merits further research.
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ABSTRACT

This report de.. cribes the development and evaluation of mathematical models for predicting human performance
from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT
was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural
network models developed to predict a composite measure of human signal detection performance. Linear regression
models based on coefficients of the decimated DWT predicted signal detection performance with half as many free
parameters as comparable models based on PCA scores and were relatively more resistant io model degradation due
to over-fitting.

Feed-forward neural networks were trained using the backpropagation algorithm to pi. ict signal detection
performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-
power DWT coefficients trained with fewer iterations, generalized to new data better, and weie more resistant to over-
fitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as
either the DWT rtwork or the raw ERP network.

The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features
for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed
in terms of its decorrelation and energy compaction properties. In addition, the DWT riodels provided evidence that a
pattern of low-frequency activity (1 to 3.5 liz) occurring at specific times and scalp locations is a reliable correlate of
human signal detection performance.

ViTRODUCTION

Studies have shown that linear regression models may significantly explain and predict human performance from
measures of ERPs elicited by stimuli presented in the context of a task (Trejo, Lewis, & Kramer, 1991; Trejo & Kramer,
1992). These models have used, as predictors, measures such as the amplitude and latency of ERP components (e.g.,
NI, P300). Other studies have used more comprehensive measures such as factors derived from principal components
analysis and discriminant functions (Humphrey, Sirevaag, Kramer, & Mecklinger, 199G). Such models work best when
they have been adapted to the individual subject, taking into account the temporal and topographic uniqueness of the
ERP. Even then, the models often suffer from a limited ability to generalize to new data. In addition, the cost of
developing and adapting sucl" models for individuals is high, requiring many hours of expert analysis and
interpretation of ERP waveforms.

Neural-network models for ERPs may be an improvement over linear regression models (DasGupta,
Hohenberger, Trejo, & Mazzara, 1990, Ryan-Jones & Lewis, 1991). 1lowever, when neural network models have been
based on traditional ERP measures, such as the sampled ERP time points or the amplitude of ERP componenLu, the
improvement in correlation between ERP measures and human performance has been small, typically about ten
percent (Venturini, Lytton, & Sejnowski, 1992). Transformations of ERPs prior to neural network analysis, such as the
fast Fourier transform (FTT), may improve neural network models (DasGupta. Ilohmnberger, Trejo. & Kaylani. 1990).
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However, the FFT is not ideally suited for representing transient signals; it is more appropriate for narrow-band signals,
such as sine waves.

The wavelet transform is well-suited for analysis of transients with time-varying spectra (Tuteur, 1989;
Daubechies, 1990,1992) such as the ERP. Discrete wavelet transforms (DWT) represent signals as temporally ordered
coefficients in different scales of a time-frequency plane. More precisely, the DWT represents signals in a time-scale
plane, where scale is related to - but not identical with - frequency. Scales are implemented by dilating a "mother
wavelet" in the time domain. Each dilation is a doubling of the wavelet length in the time domain which results in a
halving of the bandwidth in the frequency domain.

Thus a scale of the transform corresponds to one octave of signal bandwidth beginning with the smallest scale,
i.e., the scale that corresponds to the highest frequencies represented in the signal. This scale, which is referred to here
as scale 0, contains frequencies ranging from the Nyquist frequency (half the sampling rate) to one half the Nyquist
frequency. As scales increase, the bandwidth decreases by a factor of two. For example, the bandwidth of scale
I extends from 1/2 Nyquist to 1/4 Nyquist, and so on. The result of this successive halving of scale bandwidth is
increasing frequency resolution (narrower bands) at larger scales (lower frequencies).

Because large scales represent low frequencies, fewer coefficients are required to represent the signal at large
scales than at small scales. In fact, since the bandwidth decreases by a factor of two with each scale increase, the
sampling rate or number of coefficients can also be halved with each scale increase. This process, called decimation,
leads to an economical but complete ,epresentation of the signal in the time-scale plane. However, in some cases
decimation may be undesirable, for example, when the temporal detail in a particular scale is of interest. In such cases,
the undecimated wavelet transform may be computed (Shensa, 1992).

It is convenient to refer to the bandwidths of the scales in units of Hz, and this familiar unit will be used to make
the following illustration. For a one-second long EEG signal with a bandwidth of 32 Hz and 64 time points, the first
and smallest scale of the DWT would represent frequencies in the range from 16 to 32 Hz with 32 coefficients. The
next larger scale would represent frequencies of 8 to 16 Hz with 16 coefficients. Successively larger scales would have
the bandwidths and numbers of coefficients: 4-8 Hz/8, 2-4 Hz/4, 1-2 Hz/2, 0-1 Hz/I. A single additional coefficient
would represent the DC level, for a total of 64 coefficients.

As with the discrete Fourier transform, with appropriate filters the DWT is invertible, allowing for exact
reconstruction of the original signal. An important feature of the DWT, however, is that the coefficients at any scale
are a series that measures energy within the bandwidth of that scale as a function of time. For this reason it may be of
interest to study signals within the DWT representation and use the DWT coefficients of brain signals directly in
modeling cognitive or behavioral data.

In this study, the effect of representing ERPs using the DWT was compared with more traditional representations
such as raw ERPs, peak and latency measures, and factors derived using principal components analysis (PCA). The
comparisons determined whether the DWT can efficiently extract valid features of ERPs for use in linear regression
models of human signal detection performance. In addition, neural network models were tested to determine whether
the relative efficiency and validity of the DWT and other ERP representations would be maintained with a non-linear
method.The signal detection task was chosen because ERP-performance relationships in this task have been described
and analyzed with linear regression models based on peak and latency measures of ERP components (Trejo et al.,
1991; Trejo & Kramer, 1992).

METHOD

In an earlier study (Trejo et al., 1991), ERPs were acquired in a signal detection task from eight male Navy
technicians experienced in the operation of display systems. Each technician was trained to a stable level of
performance and tested in multiple blocks of 50-72 trials each on two separate days. Blocks were separated by I-
minute rest intervals. About 1000 trials were performed by each subject. Inter-trial intervals were of random duration
with a mean of 3 s and a range of 2.5-3.5 s. The entire experiment was computer-controlled and performed with a 1l-
inch color CRT display.

Triangular symbols subtending 42 minutes of arc and of three different luminance contrastL, (. 17.43, or .53) were
presented parafoveally at a constant eccentricity of 2 degrees visual angle. One symboTl was designated as the target,
the other as the non-target. On some blocks, targets contained a central dot whereas the non-targets did not. However.
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the association of symbols to targets was alternated between blocks to prevent the development of automatic
processing. A single symbol was presented per trial, at a randomly selected position on a 2-degree annulus. Fixation
was monitored with an infrared eyetracking device. Subjects were required to classify the symbols as targets or non-
targets using button presses and then to indicate their subjective confidence on a 3-point scale using a 3-button mouse.
Performance was measured as a linear composite of speed, accuracy, and confidence A single measure, PFI, was
derived using factor analysis of the performance data for ail subjects, and validated within subjects. PFI varied
continuously, being high for fast, accurate, and confident responses and low for slow, inaccurate, and unconfident
responses. The computational formula for PFI was

PFI = .33 Accuracy + .53 Confidence - .51 Reaction Time

using standard scores for accuracy, confidence, and reaction timebased on the mean and variance of their distributions
across all subjects.

ERPs were recorded from midline frontal, central, and parietal electrodes (Fz, Cz, and Pz; Jasper, 1958), referred
to average mastoids, filtered digitally to a bandpass of .1 to 25 Hz, and decimated to a final sampling rate of 50 Hz.
The prestimulus baseline (200 ms) was adjusted to zero to remove any DC offset. Vertical and horizontal
electrooculograms (EOG) were also recorded. Across subjects, a total of 8184 ERPs were recorded. Epochs containing
artifacts were rejected and EOG-contaminated epochs were corrected (Gratton, Coles, & Donchin, 1983).
Furthermore, any trial in which no detection response or confioice rating was made by a subject was excluded along
with the corresponding ERP.

RESULTS

Data Sample Construction

Within each block of trials, a running-mean ERP was computcd for each trial. Each running-mean ERP was the
average of the ERPs over a window that included the current trial plus the 9 preceding trials for a maximum of 10 trials
per average. Within this 10-trial window, a minimum of 7 artifact-free ERPs were required to compute the running-
mean ERR If fewer than 7 were available, the running mean for that trial was excluded. Thus each running mean was
based on at least 7 but no more than 10 artifact-free ERPs. This 10-trial window corresponds to about 30 s of task time.
The PFI scores for each trial were also ave'raged using the same running-mean window applied to the ERPs, excluding
PFI scores for trials in which ERPs were rejected.

Prior to analysis, the running-mean ERPs were clipped to extend from time zero (stimulus onset time) to 1500 ms
post-stimulus, for a total of 75 time points. Sample running-mean ERPs (prior to application -f rejection criteria) for
one subject from one block of 50 trials are shown in Figure 1. Over the course of the block, complex changes in the
shape of the ERP are evident.

The set of running-mean ERPs was split into a screening sample for building models and a calibration sample for
cross-validation of the models. For each subject, odd-numbered blocks of trials were assigned to the screening sample,
and even blocks were assigned to the calibration sample. After all trial-rejection criteria were satisfied, 2765 running-
mean ERPs remained in the screening sample and 2829 remained in the calibration sample.

Linear Regression Models

A multiple-electrode (Fz, Cz, Pz) covariance-based PCA was performed on the running-mean ERPs. Each
observation consisted of the 75 time points for each electrode for a total of 225 variables per observation. The BMDP
program 4M (Dixon, 1988) was used for the calculations, using no rotation and extracting all factors with an
eigenvalue greater than 1. One hundred and thirty-six factors were extracted, accounting for 99.45% of the variance in
the data. The decay of the eigenvalues was roughly exponential, with the first 10 factors accounting for 70.96% of the
variance in the data. Factor scores were computed for each running-mean ERP and stored for model development.

The DWT was computed using the same ERPs as in the PCA. A Daubechies analyzing wavelet (Daubechies,
1990) was used to compute the DWT of the EEG data over four scales. The length of the filters used for this wavelet
was 20 points. This results in very smooth signal expansions in the wavelet transform The scale boundaries and center
frequencies of the scales are listed in Table 1.
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Figure 1. Running-mean ERPs at sites Fz, Cz, and Pz for subject 2 in the first block of 50 trials. Zero on
the abscissa represents the stimulus onset (appearance of the display symbol used for the signal
detection task). The ordinate represents scalp voltage at each electrode site; positive is up. The
running-mean ERPs for successive trials of the block are stacked vertically from bottom to top
(lowest is first).

The deciminated transform was centered within the ERP epoch (a factor of 2 at successive scales) yielding a total
of 70 coefficients per transform (very low frequency scales and the DC term were excluded). The number of
coefficients used was approximately halved with each increasing scale after decimation. For scales 0-3, the respective
numbers of coefficients were 37, 19, 9, and 5. The real values of the DWT were stored for model development- No
further transformations were performed.

Linear regression models for predicting performance (PFI), from either the PCA factor scores or from the DWT
coefficients of the running-mean ERPs, were developed using a stepwise approach (BMDP program 2R). A criterion
F-ratio of 4.00 was used to control the entry of predictor variables into a model. The F-ratio to remove a variable from
a model was 3.99, resulting in a forward-stepping algorithm. The performance of each model was assessed by
examining the coefficient of determination, r2, as a function of the number of predictors entered (rW is the square of the
multiple correlation coefficient between the data and the model predictions and also measures the proportion of
variance accounted for by the model when the sample size is adequate and distributional assumptions are met).
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Table 1. Scales of the 20-point Daubechies Discrete Wavelet Transform

Scale Bandwidth (Hz) Center Frequency (Hz)

0 10.50 25.00 16.20
1 4.42 10.50 6.82
2 1.86 4.42 2.87
3 0.78 1.86 1.20

Using the criteria described above, 90 factors of the PCA entered into models predicting PFI, and 92 coefficients
of the DWT entered into models predicting PF1 (Figure 2). The r2 increased for the PCA models in a fairly smooth,
negatively accelerated fashion from a minimum of .07 for a single factor model to a maximum of .58 using 90 factors
as predictors. The r2 for the DWT model based on a single coefficient was .12, nearly double that of the PCA model
based on a single factor. The increase in r2 for the DWT models was almost linear for models using up to four
coefficients as predictors; beyond that, further increases occurred in a piece-wise linear fashion reaching a maximum
of .62 using 92 predictors. The greatest difference in r2 between the DWT and PCA models (.11) also occurred with
four predictors.

Prior experience has shown that models using more than 10 predictors have limited generality and are difficult to
interpret. For this reason, cross-validation of the PCA and DWT models was performed with no more than 20
predictors. The models developed using the screening sample were applied in turn to the PCA scores and DWT
coefficients of the calibration sample. As for the screening sample, performance of the models for the calibration
sample was assessed using r2 (Figure 3). In addition, the significance oft 2 was assessed using a F-ratio test (Edwards,
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Figure 2. Coefficients of determination (r2 or variance accounted for) for PCA and DWT models developed

to predict task performance (PF1) for eight subjects in a signal detection task. Models were based
on a screening sample of running-mean ERP and PFJ data, drawn from odd-numbered blocks
of trials. Models are assessed by the r2 as a function of the number of Predictors entering into the

model. Only models in which predictors met a criterion F-ratio of 4.0 to enter (3.99 to remove)
are shown.
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1976). This test used an adjusted number of degrees of freedom for the denominator, to allow for the serial correlation
in the data introduced by computing the running means of the ERPs. In effect, the number of degrees of freedom was
divided by 10, to allow for the (0-trial cycle length of the running-mean window. A conservative significance level of
.001 was chosen, given the large number of models computed. The contour of r2 values at this significance level
appears as a dot-dashed line in Figare 3.

All of the PCA and DWT models tested explained significant proportions of variance in the calibration data set.
For the PCA models, calibration r' rose gradually from a nearly insignificant level to a maximum of .22 using 10
predictors. The equation for the 10-predictor PCA model was

PFI = .1lFactor2-.I0Factor4+.13Factor5-.05Factor8
- .09 Factor9 + .08 Factorll - .06 Factorl5 - .08 Factor43
+ .07 Factor47 - .07 Factor68 + .02

where the factors are indexed according to the proportion of variance accounted for in the running-mean ERPs. The
factor accounting for th: greatest variance in the ERPs (Factor 1) did not enter the model. Five of the first 10 factors
(Factors 2, 4, 5, 8, and 9) entered the model. Respectively, these factors accounted for proportions of variance in the
ERPs of .12, .031, .0283, .0184, and .0169, or a total of .21 (21%). The entry of some of the higher factors in the 10-
predictor model is surprising, given the small amount of variance in the ERPs that they account for. For example,
Factors 11, 15, 43, 47, and 68 accounted for proportions of variance equal to .014, .01, .0022, .0019, and .0011,
respectively, or a total of .0292 (under 3%).

Among the DWT models, the calibration r' for a single predictor (.11) was well above that of the corresponding
single-factor PCA model (.04) and rose to a maximum of .22 using five DWT coefficients as predictors. The DWT
coefficients are coded by electrode (Fz, Cz, Pz), scale (SO, S 1, S2, S3) and time index (TO, Ti.... TN). Actual latencies
of the time points are obtained by multiplying the time index by 20 ms, the sampling period. The best single-predictor
model was based on coefficient CzS3T22, with a regression coefficient of -.03 and an intercept of .02. Beyond five
predictors, the r2 for the DWT models declined slightly, and leveled off after about 10 predictors, showing no further
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Figure 3. Coefficients of determination (r 2 or variance accounted for) for the first 20 PCA and DWT
models of Figure 2, cross-validated using running-mean ERP and PFI data from a calibration
set of data drawn from even-numbered blocks of trials. The dot-dashed line indicates the contour
of r2 values significant using an F-ratio test at thep < .001 level where the numerator degrees of
freedom depends oi, the number of predictors and the denominator degrees of freedom is one-
tenth of the sample size. Values above this contour are significant.
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improvement As for the screening sample data, the greatest difference in r2 between the DWT and PCA models for

the calibration sample (.10) occurred with four predictors.

The equation of the best five-predictor DWT model selected by the stepwise regression algorithm was

PFI = - 0.03 * FzS2T6 + 0.04 * FzS2T22 + 0.06 * CzS2T6
- 0.05 * CzS2T22 - 0.05 * PzS2T6 - 0.17.

It is clear that a single scale, number 2, is most important for predicting task performance. This scale mainly
reflects the time course of energy within the bandwidth of .078 to 1.86 Hz, which overlaps the range of the delta band
of the EEG (1- 3.5 Hz) and will include some influence from low-frequency ERP components such as the P300 and
slow waves. Two time intervals are indicated across electrodes: point 6 at Fz, Cz, and Pz (120 ms), and point 22 and
Fz and Pz (440 ms). Frontal and parietal energy (Fz, Pz) in scale 2 at 120 ms is inversely related to PFI as shown by
the negative regression coefficients, whereas central activity (Cz) is positively related to PFI. Central and parietal
energy (Cz, Pz) in scale 2 is inversely related to PF1 at 440 ms.

One potential problem with the wavelet analysis performed here stems from the length of Daubechies filters used
(20 points). These filters had lengths over one fourth the length of the signals (75 points). While these filters produce
smooth wavelets, they also increase the "support" of the transforms in the time domain. This means that the transforms
are extrapolated in time before and after the interval of the signal. It is possible to decrease the support of the wavelet
transform at the expense of smoothness by using shorter filters. To test the effects of shorter filters, the current data
were partially re-analyzed using Daubechies filters of 4 points in length. With these filters, the support of the transform
is reasonable at all four of the scales analyzed and time resolution of signal features at the larger scales is more precise
than with the 20-point filters.

The most important single predictor for the 4-point filter DWT was located at electrode Cz and scale 2, as for the
best single-predictor model based on 20-point filters. However, the wavelet coefficient in the 4-point filter model,
CzS2TI5, was at the 15th time point or a latency of 300 ins. This lies 120 ms earlier than the scale 2 coefficient in the
best single-predictor model based on the 20-point filters (CzS2T22). The regression coefficient for CzS2TI 5 in the 4-
point filter model was .03, with an intercept of -. 16. This regression coefficient is negative, whereas the regression
coefficient for CzS2T22 in the 20-point filter model was positive. The difference in sign suggests that CzS2T15 in the
4-point filter model is a different feature of the ERP than CzS2T22 in the 20-point filter model, even though it is in the
same scale and at the same electrode. The cross-validation r2 for the 4-point filter based on CzS2TI5 was .15, which
is higher than the r2 for CzS2T22 in 20-point filter model (.11).

Neural Network Analyses

In addition to the linear regression models, feed-forward artificial neural networks were trained using the
backpropagation method (Rumelhart & McClelland, 1986) to predict PFI from ERP patterns. Three networks were
trained: 1) raw ERPs; 2) PCA scores; and 3) DWT coefficients. For the ERP network, the inputs were the voltages in
the ERP time series for electrodes Fz, Cz, and Pz. These were the same data used to derive the PCA scores and DWT
coefficients used in the linear regression models described earlier. There were 75 points per electrode spanning a
latency range of 0-1500 ms, for a total of 225 network inputs. For the PCA network, the PCA scores used in the linear
regression models described above served as inputs. As for the linear regression models, only the first 136 factors were
retained.

Table 2. Scales of the 4-point Daubechies Discrete Wavelet Transform

Scale Bandwidth (Hz) Center Frequency (Hz)

0 10.88 25.00 16.49

1 4.74 10.88 7.18

2 2.06 4.74 3.12

3 0.90 2.06 1.36

4 0.39 0.90 0.59
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For the DWT network, three changes were made in the generation and selection of DWT coefficients. Fmrt, the
wavelet transform was based on the 4-point Daubechies filters which appeared to be superior to the 20-point filters
used in the initial linear regression models. Second, since low frequency information seemed valuable in the linear
regression models, the range of the transform was extended, adding a fifth scale (Table 2). Third, selection of the
coefficients was not performed by the decimation approach taken for the linear regression models. Instead, the
undecimated transforms were computed (Shensa, 1991), yielding 75 points for each scale. Then the mean power of
each coefficient was computed and the top 20% of the coefficients at each scale were sclected as inputs to the network
(Figure 4). This resulted in a set of 225 coefficients, or about the same number that would be obtained by decimation.
However, this scheme selects coefficients that are high in power, and so account for large proportions of the ERP signal
variance at each scale.

Networks were trained and tested with a commercial software package (Brainmaket, California Scientific
Software, Inc.). All three networks consisted of two layers. A single "hidden" layer consisting of three neurons
received connections from all the inputs. These three neurons were fully connected to the output layer, which .ousisted
of a single neuron. The teaching signal for this neuron was PFI. In addition to inputs from other neurons, each neuron
received a constant "bias" input, which was fixed at a value of 1.0.

The output transfer function for all neurons was the logistic function with a gain of 1.0 and a normalized output
range of 0.0 to 1.0. The learning rate was 1.0 and the momentum was 0.9. All inputs and the desired output (PFI) were
independently and linearly normalized to have a range of 0.0 to 1.0. As for the linear regression models, the screening
sample (half the runs) was used for training the networks and the calibration sample (the remaining runs) was used for
testing. Training proceeded by adjusting the connection weights of the neurons for every input vector. The training
tolerance was 0.1, i.e, if the absolute error between the network output (predicted PFI) and the actual PF1 value for a
trial exceeded 10%, taen the connection weights were adjusted using the backpropagation algorithm.

Prior to training, the sequence of input vectors was randomized. Training involved repeated passes (training
epochs) through the screening sample and was stopped after a maximum of 1000 training epochs. Testing was
performed on the calibration sample at intervals of 10 training epochs. The validity of a trained network was measured
in terms of the proportion of calibration sample trials for which PF1 was correctly predicted to within the criterion 10%
margin of error. The curve relating the proportion of correctly predicted calibration sample trials to the number of
training epochs will be referred to as the generalization learning curve (Figure 5).

The probability of correctly guessing a uniform random variable with a range of 0.0 to 1.0 with a 10% margin of
error is 0.2. As shown in Figure 5, two of the three networks trained to predict PFl in the calibration sample better than
0.2 with as few as 10 training epochs. Beyond 50 training epochs, the generalization learning curves of the three
networks begin to diverge.

The DWT network appears to "learn" to generalize about as well as it can by about 290 training epochs. For this
network, the proportion correct jumps from about 0.25 to over 0.3 near 200 epochs. From that point on, a rough plateau
in the curve is held, with a few dips between 800 and 1000 epochs. The maximum proportion correct of 0.348 occurs
at epoch 930, but this is not substantially (or significantly) greater than an earlier maximum of .346 at epoch 290.

For the ERP network, a gradual rise in the proportion correct occurs between 10 and 400 epochs, reaching a
maximum of 0.331 at training epoch 350. Beyond 400 epochs, the proportion correct for the ERP network declines
gradually to near chance levels of performance.

The generalization learning curve of the PCA network exhibits the most complex shape, rising and falling
repeatedly over the 1000-epoch range. Interestingly, it also shows a large step near 200 epochs, as did the DWT
network, and an early maximum of 0.279 at 250 epochs, after which the curve declines and oscillates up to about 850
epochs. At that point the curve rises again, reaching a new, higher maximum of 0.288 at 940 epochs.

Although the curves in Figure 5 are complex, two generalizations seem possible. First, within the 1000-epoch
scope of the training, all three networks appear to achieve near-maximal levels of generalization performance within
the first 400 taining epochs. Beyond 400 training epochs, further training appears to produce either declines or
oscillations in generalization performance, and only small increases above the earlier maximum proportions of
correctly predicted trials occur. Second, the DWT network trained most rapidly and achieved the highest and most
stable level of generalization performance. The DWT network "learned" to generalize to new data faster than the ERP
network by about 60 training epochs.
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Figure 4. Mean power of the undecimated 5-scale DWT coefficients at electrodes Fz, Cz, and Pz, used for
the neural network trained to predict PF1. The DWT coefficients for each running-mean ERP
were squared, summed, averaged and plotted as a function of time relative to the stimulus. Each
row of graphs represents one scale of the transform beginning with the smallest scales at the top
(see Table 2) and proceeding to the largest scale at the bottom. Each column of graphs
corresponds to one electrode site in the order Fz, Cz, Pz, from left to right. The 80% quantile was
computed across electrodes within each scale and is shown by the horizontal line in each graph.
Coefficients with mean power values greater than the 80% quantile, i.e., the top 20%, were used
as inputs to the neural network.

The raw ERP network achieved a proportion correct approaching that of the DWT network (.331 versus .348) but
was not as stable. A z test of the significance of the difference between these proportions based on the standard normal
distribution (Fleiss, 1981, p. 23) yielded ap-value of 0.21. However, an F-test of the ratio of variances of proportions
correct for the ERP and DWT networks between epochs 200 and 1000 rejected the hypothesis that the variances were
equal (the alternative hypothesis was that the true ratio of variances was greater than 1.0), F(79,79) = 3.12, p < 0.000.

Generalization performance of the PCA network was lower than both the ERP and DWT networks. The - test% of
the differences between the proportions correct of DWT and PCA networks and of ERP and PCA networks yielded p-
values of 0.0015 and 0.0162, respectively.
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Figure S. Generalization learning curves of the three neural networks trained to predict PFI from raw
ERPs (solid line), PCA scores (dotted line), or high-power DWT coefficients (dashed line). The
abscissa marks the number of training epochs (complete passes through the screening sample)
and the ordinate marks the proportion of trials in the calibration sample for which PFI was
correctly predicted with a 10% margin of error. The solid circles mark the highest proportion
correct for each network.

Decorrelation and Energy Compaction

Statistical independence of the predictor variables could be one reason why the linear regression models based on
P•A scores and the DWT were more successful than the peak and latency measures used in earlier analyses. In the
signal processing literature, the tendency of a transform to render independent measures from multivariate data is
called decorrelation. Decorrelation efficiency compares the sum of the off-diagonal terms in the covariance matrices
of the original (raw ERPs) and the transformed data (Akansu & Haddad, 1992, p. 28). A transform that perfectly
decorrelates the data has a decorrelation efficiency of 1.0.

The decorrelation efficiency of the 4-scale DWT used here was 0.13. Although the factors obtained with PCA are
decorrelated, the factor scores which represent the data may be correlated. For this reason, the decorrelation efficiency
of the PCA, measured from the covariance matrix of the factor scores was not 1.0, but .64, which is still several times
higher than the decorrelation efficiency of the DWT. However, the DWT regression models explained the same amount
or more variance in the data using fewer variables than the PCA models. Thus it appears that the degree of
decorrelation of a transform alone does not determine how well it will extract important ERP features for modeling
task performance.

The relatively small number of DWT coefficients needed to generalize to new data using linear regression models
suggests that the DWT efficiently extracts a small but behaviorally important set of features from the ERP. The relative
speed of generalization learning by the DWT neural network may also be consistent with this idea. If only a small
proportion of the inputs contain information related to the output then only the weight, corresponding to those inputs
would require adjustment, leading to faster generalization learning.

In signal processing, the property of a transform that describes its tendency to concentrate information in a small
proportion of the variables is called energy compaction (Akansu & Haddad, 1992, p. 28). Good energy compaction
means having a small number of large values on the diagonal of the covariance matrix of the transform variables. It is
measured as a function of the number of variables retained to fit the data, sorted in order of decreasing covariance.
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Energy compaction could also result in more robust models, showing less over-fitting. This could occur when the
variables that explain most of the variance enter first, leaving only variables of low influence to adversely affect the
fits when added later.

For the data used in the linear regression models, energy compaction measures of the raw ERPs, PCA scores, and
DWT coefficients for 5 variables was .06- .08, and .09. For 10 variables, energy compactions for ERP, PCA, and DWT
were .11, .15, and .16, and for 20 variables, energy compactions were .20, .25, and .26, respectively. Thus over the
range of models tested, the DWT was only slightly more efficient in compacting the energy (or variance) in the data
than the PCA. It seems unlikely that such small differences in energy compaction (about 1%) could account for the
higher efficiency of the DWT models than the PCA models.

DISCUSSION

Linear Regression Models

Both PCA and DWT methods yielded linear regression models that significantly explained signal detection
performance in a 30 s running window and generalized to novel data. Both methods also performed better than a
traditional peak amplitude and latency analysis of the running-mean ERPs. For comparison, the best stepwise linear
regression model developed using predictors drawn from a set of 96 multi-electrode amplitude and latency measures
of the ERP on the same data set yielded an r2 of .28 for the screening sample and failed to significantly cross-validate
on the calibration sample (Trejo & Kramer, 1992; peak amplitude- and latency-based models did cross-validate when
adapted to the ERP waveforms of individual subjects).

The DWT models were clearly superior to the PCA models when based on a small number of predictors. Twice
as many PCA factors were required to explain the same amount of variance in the data as DWT models based on 5
coefficients. In cross-validation, no advantage of the PCA models over DWT models was evident with any numroer up
to 20 predictors. The PCA models showed evidence of over-fitting the data when more than 10 predictors were used,
as shown by the decline iu, -2 for the calibration sample for models using 10 to 20 predictors. In contrast. the DWT
models suffered relatively small decreases in r2 when using more than 5 coefficients.

Single-predictor models for the DWT based on 4-point filters were compared to the 20-point filters used initially
to determine the sensitivity of the location estimates to filter length. The net effects of using shorter filters to compute
the wavelet transform were to change the location estimate, but not the electrode or scale estimates of the best single
predictor model, and increased cross-validation r. The higher cross-validation r2 for the 4-point filter model than the
20-point filter model was rnexpected. However, this result suggests that more precise temporal localization of features
in the wavelet transform may provide more robust representation of the ERP or EEG features associated with task
performance.

PCA is known to produce factors that resemble the shape and time course of ERP components. The information
provided by the DWT is somewhat different. For example, the 5-predictor DWT model indicated that a pattern of
energy at specific latencies in the ERP confined to the bandwidth associated with P300, slow waves, and EEG delta
band activity, was correlated with signal detection performance across a sample of eight subjects. It is well known that
P300 and slow waves co-vary with the allocation of cognitive resources during task performance. However, it is not
clear whether the wavelet coefficients included in the regvession models are simply better measures of P300 and slow
wave or if they represent new aspects of the ERP. Comparisons of ERPs reconstructed from the DWT coefficients and
the average ERP waveform., will be required to express the coefficients in terms of familiar ERP peaks.

Neural Networks

As for the linear regression models, the best generalization performance of neural networks - measured in terms
of predicting PFI in the calibration sample - was achieved with the DWT representation of the ERPs. Somewhat
surprisingly, neural networks trained to predict PFI from raw ERPs generalized almost as well as the DWT. Both ERP
and DWT-based networks generalized to new data significantly better than networks based on PCA scores.

The neural network based on the DWT required fewer training epochs than the raw-ERP network to reach a
maximal level of generalization to new data. In addition, beyond the initial training period of 200 epochs,
generalization performance of the DWT network was more stable than the ERP network. After about 400 training
epochs, the generalization learning curve declined for the ERP network, indicating over-fitting of the data in the
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screening sample. In contrast, the generalization learning curve for the DWT exhibited a few dips, but remained
surprisingly stable over most of the training range, indicating a resistance to over-fitting. This result agrees with the
resistance to over-fitting observed with more than the optimum number coefficients in the linear regression models
based on the DWT.

General Conclusions

The results described here show that the DWT can provide an efficient representation of ERPs suitable for
performance-prediction models using either linear regression or neural network methods. Furthermore, the DWT
models tested here needed the fewest parameters, exhibited highest generalization and were relatively insensitive to
the detrimental effects of over-fitting as compared to models based on PCA scores or raw ERPs. This result, together
with the initial rise in r2 for the linear regression DWT models (Figure 3) suggest that the DWT coefficients measure
unique and important sources of performance-related variance in the ERP

The superiority of the DWT over PCA seen in the models tested here cannot be explained in terms of decorrelation
and energy compaction properties of these transforms. Decorrelation was actually higher for PCA than for the DWT,
and energy compactions over the range of variables included in the models were about equal for the two transforms.
Instead, it appears that the DWT simply provides more useful features than PCA, when utility is measured by how
efficiently task performance can be predicted using ERPs.

For practical ERP-based models of human performance, ease of model development and speed of computation
are also important factors. The cost of computing the DWT is trivial when compared to deriving a PCA solution, which
involves inverting and diagonalizing a large covariance matrix. Even more time is required for peak and latency
analyses, which depend on expert human interpretation of the waveforms.

The nature of the features extracted using the DWT merits further study. By identifying the time and scale of
energy in the ERP related to task performance, specific ERP or EEG generators may be indicated, as shown by the
dominant presence of slow waves and delta-band activity in the 5-predictor linear regression DWT model of signal
detection performance. In this way, the DWT may provide new insight into the physiological bases of cognitive states
associated with different performance levels in display monitoring tasks.

Future work should examine the reconstructed time course and scalp distribution of the patterns indicated by DWT
or other wavelet models and relate these to known physiological generators. Through inversion of the DWT it is
possible to reconstruct the time course of the energy indicated by a specific model. In addition, other -wavelet
transforms may provide a finer analysis of the time-frequency distribution of the ER!. For example, wavelet transforms
using multiple "voices" per scale, such as the Morlet wavelets or wavelet packets, provide much finer resolution than
that afforded by orthonormal wavelets used in this study. In addition, datafrom other kinds of tasks should be analyzed
and the development of models for individual subjects should be also explored.
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Neural Network Discrimination of Brain Activity

David L Ryan-Jones & Gregory W. Lewis
Navy Personnel Research and Development Center

San Diego, CA 91252-7250

Electroencephalogram (EEG) and event-related brain potential (ERP) data are often recorded in
studies of brain processing (Gevins, 1986; Regan, 1988). EEG and ERP records are samples over time of
the electrical activity resulting from changes in polarization of the neurons in the brain. ERP dat differ
from EEG data in that ERPs are sampled relative to the time of onset of a specific stimulus. An sample of
electrical activity over time is known as an epoch. Single-epoch ERP samples contain brain responses
,.sociated with the sensation and perception of a stimulus, cognitive activity, and the behavioral

preparations of the subject. Although single-epoch ERP data may be desirable in the analysis of the brain
processing related to the stimulus event, single-epoch waveform features are small compared to the more
random background EEG activity. Single-epoch ERP data for two subjects are shown in Figure 1. Note
that single samples of activity within subjects and between subjects do not look exactly alike. As a result,
several epochs are usually averaged to reduce the background noise level. The number of epochs required
for the average waveform is related to the average amplitude of the specific feature of interest. Average
ERPs for the data in Figure I are shown Figure 2. As with the single-epoch ERP daM, the average ERPs
look very different from each other, and from the single-epoch samples that make up the averages.

Another factor to be considered with single-epoch data is that ERP features are generated by
complex nonlinear processes. As a result, single-epoch waveform features may have unknown
distributions, and different features may have very complex interrelationships. Therefore, traditional
statistical techniques may not be the best method way to analyze single-epoch dam. In spite of these
problems, single-epoch ERP analysis may be desirable, especially when few samples are available or when
real-time processing of data is desired. Recently, neural network analysis techniques have been used
extensively to extract weak signal features masked by noise, and to interpret data containing unknown
nonlinear relationships (Anderson, S., 1990; Benediktsson, Swain, & Ersoy, 1990). The purpose of the
current research was to determine whether neural network techniques could be used to improve the
analysis and interpretation of single-epoch ERP data.

The data used in this study were derived from a visual discrimination experiment. Five male
subjects were required to make discriminations between geometric designs and human faces. There were
a total of 5 different designs, and each design was presented & times. There were 5 different faces, and
each face was presented 8 times. Thus, there were a total of 40 geometric stimuli, and 40 human faces.
The stimuli were displayed in random order on a monochrome CRT with an average interstimulus
interval of 3 sec. During performance of the task, ERP data were sampled from sites F3, F4, C3, C4, P3,
P4, 01, and 02 referenced to linked mastoids. Each epoch consisted of 125 ms prestimulus period, and
an 825 ms poststimulus period. The data were sampled at 128 Hz, 20K gain, and filtered with a bandpass
of 0.1-100 Hz bandpass. The single-epoch data for each type of stimulus (geometric design or face) for
each subject were then averaged, and comparisons were made between the recognized waveform features
generated by the two types of stimuli. No significant differences were found between the two stimuli in
terms of the latency or amplitude any ERP waveform features. The single-epoch ERP data were not
processed further, and EMG and eyeblink artifacts were not removed from the data. Artifacts were not
removed from the data to simulate the conditions that would be encountered in the real-time application of
the techniques. The 400 single-epoch ERPs (5 subjects x 80 ERPs/subject) were divided equally into two
sets. The 200 odd-numbered epochs were used for the training set in the study, and the 200 even-
numbered epochs were used for the test set. This selection rule was used instead of random selection to
minimize changes in the ERP data due to adaptation over time on task.

A backpropagation learning algorithm was selected as the classification tool for the study. This
algorithm was selected for several reasons. First, the mathematics and statistics of the backpropagation
algorithm are well understood (Wan, 1990; White, 1989), Second, the backpropagation algorithm has
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been shown to be very successful in classifying data with complex nonlinear relationships (Maren,
Harston, & Pap, 1990). Third, many different backpropagation network packages are available in the
commercial market, making it unnecessary to locally develop the software code to implement the
algorithm. An IBM/PC compatible version of a commercial package was selected for this study.
However, all of commercial software packages have some limitations in their implementation. In this
case, the size of the data file was limited by the capacity of the file editor, and by the number of.processing
nodes allowed by the memory model. In order to meet these size limitations, the data were restricted to
samples from two sites P4 and F3. Sites P4 and F3 were selected because previous studies of the ERPs
generated by human faces have suggested that some of the waveform features at these sites exhibit an
enhanced response to face stimuli compared to other kinds of stimuli. In particular, a positive wave at
about 300 ms (P3), and a negative wave at about 500 ms (negative slow-wave or NSW) after stimulus
onset have been associated with facial recognition. Thus, it was possible that differences in single-epoch
data might be found where differences in averaged data had been previously noted. Keep in mind,
however, that the amplitude and latency of these two waveform features were not significantly different
for the two types of stimuli. In considering these data, one possible reason for this failure is the large
trial-to-trial variability seen in the amplitude, latency, and shape of these waveform features.

One critical step in performing a network analysis is to define the parameters of the network. An
unsuccessful network may only mean that the network parameters are not optimal for the problem at
hand. Optimal network parameters can be determined, if one has the time, by comparing the performance
of alternative forms. In this study, the optimal network consisted of 3 layers, including an input layer
with 256 nodes, one hidden layer with 128 nodes, and an output layer with 1 node (face-not face). The
input data consisted of 256 values (128 values from each sample recorded at P4 and F3). The data were
normalized to values between 0 and 1, and the output value was allowed to vary between 0 and 1. The
purpose of the data transform and output value restriction was to simplify the interpretation of the
resulting network. The network was trained using odd-numbered epochs, and subsequently tested for
generalization using the even-numbered epochs. Relationships between the variables at different layers in
the network were modeled by the logistic transform function. The network learning rate was initially set
to 0.9, and the rate was allowed to decrease to 0.7 as training progressed. Network weights were modified
after each training example was processed by the network.

There are several different strategies that can be used to train a backpropagation network,
including training to a fixed performance level, and training to the minimum least squared error. In this
study, training continued until all of the epochs in the training set were correctly classified during a single
pass through the data. During training, correct classification was considered to be an output of 0.9 and
above for a face, or 0.1 and below for a geometric design. During testing, these values were lowered to
0.6 and above for a face, and 0.4 and below for a geometric design. Network training required about 72
hours of time on an IBM/PC 386-25 compatible computer. This translates into 2000 passes through the
training set to realize the required 100% correct classification criterion. After training, the network was
evaluated using the test set of ERP samples. The trained network was able to correctly classify 178 (89%)
of the epochs in the test set (X2 =122.12, df=l, p<0.0001).

The results demonstrate that neural network techniques can be successfully applied to single-
epoch ERP analysis. Of course, this was not entirely unexpected since these techniques have been
successfully applied to data in other domains with similar characteristics. One problem with using these
techniques is interpreting what the resulting network means within the context of traditional ERP
analysis. The pattern of weights in the hidden layer of the network suggests that the neural network
compared information about the amplitude and latency of the P3 and NSW components of the single-
epoch ERPs. Remember, however, that there were no significant differences in the analysis of variance
between the two stimuli in P3 or NSW amplitude or latency. The success of the neural network
techniques in evaluating ERP data is not surprising since the backpropagation network can effectively
utilize the nonlinear relationships in the data. One very important implication of this application of
neural network techniques is that brain electrical activity can now be accurately interpreted in near real-
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time. Thus, it may soon be practical to directly utilize brain activity to modify or control the
characteristics of a man-machine interface.

REFERENCES

Anderson, S. (1990). Neural network applications of signal processing, pattern recognition, and real
time intelligent processing. In Proceedings of the First Workshop on Neural Networks:
Academic/lndusrriallNASAlDefense. Madison, WI: Omnipress.

Benediktsson, J., Swain, P., & Ersoy, 0. (1990). Neural network approaches versus statistical methods
in classification of multisource remote sensing data. IEEE Transactions on Geoscience and
Remote Sensing, 28,540-552.

Gevins, A. (1986). Quantitative human neurophysiology. In H. Hannay (Ed.), Experimental techniques
in human neuropsychology. New York: Oxford University Press.

Maren, A., Harston, C., & Pap, R. (1990). Handbook of neural network computing applications. San
Diego: Academic Press.

Regan, D. (1988). Human brain electroPoysiology: Eoked potentials and cvok-d rnagneticfields in
science and medicine. London: Chapman & Hall.

Wan, E. (1990). Neural network classification: A bayesian interpretation. IEEE Tran. ctions on Neural
Networks, 1, 303-305.

White, H. (1989). Neural-network learning and statistics. Neural Computing, 1,425-464.

95



Subject I chanO4

t :2 3 5

I aII
.OA

I P

Subject 3 than0l

II I II

I I

6 7 9
V V ) Ir W.

Figure 1. Single-Epoch ERP data for two subjects.

96



Sub 001

.4

-12

-16

-~ 0 zw 40 aw Ow low

Sub 003

16

12

"a-- --IT -

-4-

-4

o-.S- ^ - - -

r2 t).emm. 04

Figure 2. Averaged ERP data for two subjects.

97



Task Response Prediction Using Cortical Brain Potentials: A Neural
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BACKGROUND

Individual identification, and assessment are necessary for many purposes in our
society. For example, it is important to control access to property, and equipment. Currently,
access to secured areas, and computer systems has depended primarily upon security badges,
and passwords. Both of these security methods can easily be subverted. New techniques are
being investigated and developed for use as improved access control techniques. In addition to
the traditional fingerprint, palm prints and photographs of the retina of the eye have also been
used for identification purposes. Biochemical systems such as genetic testing are being
increasingly used for forensic testing, but are not yet practical as an applied identification tool
at this time. Systems which rely on anatomical features, as in the case of fingerprints, may be
subverted. The approach described in this paper will improve upon the currently used
techniques for individual identification.

Brain Recordings

For more than 50 years, the research literature has suggested that there are large
individual differences in the electrical and magnetic activity in the brain. There is also
evidence that some of the characteristics of brain activity may be stable when measured from
day-to-day. Brain responses to sensory stimulation (e.g. visual, auditory, somatosensory,
olfactory, gustatory) as well as higher-order cognitive processing (e.g., decision-making), now
can be examined in great detail using a variety of recording procedures. An on-going record
of brain electrical activity is called an electroencephalogram (EEG), and a comparable record
of magnetic activity is called a magnetoencephalogram (MEG). EEG and MEG records
usually have a great deal of uncontrolled variation, and special techniques are necessary to
stabilize activity patterns. Brain activity can be stabilized by strict control of the conditions
under which brain activity is generated. When human sensory systems are stimulated by an
event such as a flash of light or a tone, there is a predictable sequence of processing that
occurs in the brain. This processing generates an event-related potential (ERP) that can be
recorded from the scalp beginning shortly after the onset of stimulation, and lasting for 1-3
seconds after the stimulation. These ERPs can be repeatedly generated from individuals who
are g•i. :n the same stimulus. Due to the low amplitude of the signal, it is often necessary to
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repeatedly sample the response to the stimulus, and to average the response patterns. ERP
measures are in the microvolt volt range (uV, millionths of a volt).

Comparable records of averaged magnetic activity are called evoked fields or event-
related fields (ERFs). Neuromagnetic measures have only recently been possible. Due to the
low amplitude of the signal, special low-temperature systems are required to measure the
magnetic signals emitted by brain tissue. The unit of measurement is femtoTesla (10-15
Tesla). Neuroelectric and neuromagnetic recordings are subsets of more general measures,
called bioelectric and biomagnetic measures. Bioelectric and biomagnetic measures refer to
recordings from all types of tissue including neural, muscle, heart, and lungs.

ERP Stability

In the NPRDC laboratory, ERP recordings have been shown to be remarkably stable
and unique to individuals (Naitoh & Lewis, 1981; Lewis, 1984; Lewis & Ryan-Jones, 1992).
Although the actual shape of an ERP varies considerably from individual to individual, there is
stability within individuals over time for individual waveforms. Sources of ERP variation
include individual differences in brain anatomy, and differences in the way in which
information is processed by the individual. Given these observations, it is now possible that
ERP waveforms could be used as classifiers for several purposes. First, since ERP
morphology is relatively unique to individuals, an individual's ERP pattern, or "brainprint",
can be used for personal identification in a manner analogous to fingerprints. Second, because
there is remarkable degree of stability in individual waveforms over time under identical
recording conditions, it may be possible to identify critical changes in individual ERP patterns
which can be used to assess job performance and functional impairment due to fatigue, stress,
alcohol and drug abuse, and other factors. Other potential uses of the individual identification
system include security/intelligence/interrogation, personnel reliability identification and
assessment, neonatal and infant identification and assessment.

Neural Network Technology

One problem which has plagued the interpretation and use of bioelectric and
biomagnetic data is the shear complexity of the brain networks which generate the data.
There are numerous neural networks in the brain, and these networks have very complex
interconnections, and nonlinear response patterns. Relationships between the latencies, and
amplitudes of ERP and ERF waveform features are becoming increasingly well understood.
In addition, there are many individual variations in waveform morphology which complicate
the identification of specific waveform features. Recently, new computing techniques which
are modeled after brain neural functioning have been developed. As a general class, these
are called neural network analysis techniques. This neural network analysis technology offers
a method for finding complex, nonlinear relationships in large data sets, even when the nature
of the relationships is not known in advance. Neural network technology is most often
implemented using computer software programs, but hardware implementations of the
technology are also available. Neural network theory, and detailed descriptions of specific
techniques are available in numerous books and articles (Dayhoff, 1990; Rumelhart &
McClelland, 1986; McClelland & Rumelhart, 1986; Wasserman, 1989; Ryan-Jones & Lewis,
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1992). The unique feature of this technology is the capability to learn which features of a data
set can be used to classify the examples into either unknown or predetermined categories.
There are a variety of neural network techniques which could be used to classify ERP or ERF
patterns. Neural networks may differ in the way the elements are interconnected, the way the
data are processed, as well as the way in which the network srucure is middified during
learning. In most networks, input data values are adjusted through a series of layers by a
series of transforms and weights so that the output category is correctly predicted. For
example, if all of the possible examples are contained in the data set, then a self-orgizig
network could be used to classify the brainwave data. If only some of the possible examples
are in the data set, then a network which utilized supervised learning could be more
appropriate. The most commonly used, and best described network is the backpropagation
network. This network is named because the error in output classification during training is
used to adjust the weights at each level in the network in a backward fashion.

METHOD

Commercially available electrodes, made of tin to minimize depolarization, were
attached to the scalp and conformed to the location standards of the 10/20 International
System (Jasper, 1958). The electrodes were attached at the parietal (PZ) and frontal (FZ)
sites, and referenced to the left mastoid region (Al). Additional electrical voltage was
recorded from Al referenced to the right mastoid area (A2). The electrical activity from Al
and A2 were averaged, in a common technique called digital re-referencing. The electrical
voltage picked up by the electrodes was very small (microvolts, millionths of a volt) and
amplified and filtered. To ensure adequate recording attachment, the impedance was
measured prior to recording. Meter readings were 5 KOhms or less. Amplifier gain was
20000 times and the filter bandpass setting was 0.1 - 100 Hz. The amplified signals were
then fed to a computer-based data acquisition system. Sampling rate was 128 Hz.

The event-related brain potential, ERP, was processed by removing unwanted artifacts
such as eye blink or muscle movement, and specific single epochs were selected. The ERP
data were "windowed" in order to reduce the number of inputs to the neural network.
Windowing refers to taking a specific number of points along the ERP waveform, such as 6,
and averaging them together.

Commercial software was used to create, train, and test the neural network. The
neural network analysis package included software to convert the data file into a definition file
and a fact file. The definition file provided the specifications on how the network was to be
built, the number of input, hidden and output neurons, the data type, and information about
screen display. The fact file specified the input and training pair pattern information.
Training of the network was done using a backpropagation learning algorithm, which
produced trained network files. After training of the network was complete, the neural
network was tested using new data.
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A 3-layer backpropagation network may be sufficient if the data set is relatively small
(e.g., less than 100 individuals in the data base). The network may only require a single
hidden layer with the same number of processing elements as inputs. One important step Ls
the training, and testing of the network. Half of the ERPs from the sample were used to train
the neural network to distinguish between each individual. The other half of the ERP were
used to verify that the neural network was performing at the required level. Once the neural
network had been trained, the network was used to make decisions about new samples of
ERPs. This process is shown schematcally in Figure 1. Samples of ERP data from four (4)
individuals, named John, Greg, Jim and David are shown as being processed by the neural
network. Identification of the individuals may be seen at the output layer.

• • •OUTPUT

HIDDEN

INPUT

John Greg Jim David

Figure 1. Schematic diagram of ERP identification by neural network analysis
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The subjects for the preliminary test were 35 male Marine Corps personnel. Each
Marine performed 400 trials of a two-letter ("o" and "c") discrimination task. ERP data were
recorded from site PZ referenced to the digitally-linked mastoid regions. Site PZ is located
over the parietal region of the brain, which is believed to be a sensory association/integration
area. The ERPs were sampled from -200 ms prestimulus to 1000 ms poststimulus at 128 Hz,
20000 amplifier gain, and 0.1-100 Hz filter bandpass. The ERP data were divided into 8
blocks of 50 trials (400 total). The first ten (10) trials in each block with correct behavioral
responses (hits) were averaged by conventional methods to obtain 8 ERPs for each of the 35
subjects (280 ERPs total). To reduce the number of input variables, each ERP was divided
into 25 windows. These windows were about 47 ms wide and consisted of 6 data points each.
The mean of these 6 data points was obtained for each window. The result was that 25
variables for each ERP were input to the neural network instead of 128 variables (128 Hz
sampling rate translates to 128 variables per 1 second sample). A backpropagation network
was used for training the network and develop the classification algorithm for the ERP data.
The 3-layer network consisted of an input layer with 25 elements (ERP windows), a hidden
layer with 25 elements, and an output layer with 35 elements (individual subjects).

RESULTS

The ERPs for each subject were divided into training and test sets. The training set
consisted of the ERP data from the odd-numbered blocks, and the test set consisted of the ERP
data from the even-numbe,-ed blocks. All of the examples in the training set (4 ERPs for each
of the 35 subjects) were correctly learned to the required criterion. The neural network was
then tested using the different ERPs from the test set. The network correctly classified 70/140
(50%) of the ERPs based on the highest output value. These results were statistically
significant given that each of the 35 subjects was a separate output category. An additional
metric was used to evaluate the correctness of classification for the subjects. For testing, the
network needed to correctly classify 2 of the 4 ERP samples for each subject. Using this
metric, the network correctly classified 29/35 (83 %) of the ERPs.

Findings from the above preliminary neural network analysis were replicated and
extended. ERP data from 40 male Marine Corps personnel were used. Subjects were not
preselected on any factor, including task or job performance. Data from an additional
recording site over the frontal region of the brain (FZ) was added to the data from PZ to allow
for more classification features. Recording and averaging of the ERP records were the same
as reported above. However, the 5 prestimulus windows for each site were deleted from the
data set. As above, the 400 trials were divided into 50 trials per block, yielding 8 ERPs per
subject. Again, only the first 10 trials were used to generate each ERP. The study used 320
ERPs total (8 ERPs/subject X 40 subjects = 320 ERPs). There were 160 ERPs in each of the
training and testing sets. The 3-layer neural network consisted of an input layer of 40
elements (20 ERP windows from each site), a hidden layer with 40 elements, and an output
layer with 40 elements (subjects). All of the ERPs were correctly classified during training,
and a substantial improvement in the classification of the test examples was seen during
testing. The network correctly classified 117/160 (73 %) for ERPs in the test set. Using the
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classification metric described above, of at least 2 of 4 ERPs for each subject, 39/40 (97.5 %)
of the subjects were correctl. classified.

DISCUSSION

Even though the current paper deals with neuroelectric ERP recordings, similar
equipment and procedures may be used in the recording, processing, and analyzing of
neuromagnetic evoked field (EF) data. Descriptions of hardware and software recording
equipment and procedures have been published elsewhere (Lewis, 1983; Lewis, Blackburn,
Naitoh, & Metcalfe, 1985; Lewis, Trejo, Nunez, Weinberg, & Naitoh, 1987; Lewis &
Sorenson, 1989; Lewis, Trejo, Naitoh, Blankenship, & Wnlow, 1989). These publications
reported on data using a single channel neuromagnetometer, however, NPRDC has a 5 channel
neuromagnetometer system for the recording of EF data over more channels and larger
number of brain regions. Even though the data reported in this paper are restricted to ERP
data, earlier research has suggested that EF data may provide improved identification due to
being non-contact in nature, monopolar, providing improved localization of brain activity, and
providing improved sensitivity to individual subject differences (Lewis, 1983).

There are no other known ways to record brain function, in a practical way, other than
neuroelectric contact electrodes or neuromagnetic pickup sensors. The latter sensors need not
be in contact with the scalp directly to sense the biomagnetic activity from individuals.
Positron emission tomography (PET) technology is able to describe anatomical relationships,
and some physiological processing. However, PET is very expensive and does not have
adequate temporal resolution for effective assessment of cognitive processing. Several minutes
of data recording are required to show brain processing. The temporal resolution, required to
assess dynamic cognitive processing, is improving with PET, but still lacks the millisecond
resolution found with ERP recordings. PET is also an "active" technology requiring the
injection of labeled radioisotopes to function. The described ERP/ERF technology is totally
"passive," in that no energy or material is needed to obtain the ERP/ERF data. Alternative
technologies such as computerized axial tomography and magnetic resonance imaging are
possible candidates for personnel identification, but are extremely expensive, are "active"
systems, and suffer from the same limitations as the other anatomically-based systems (e.g.,
fingerprint) noted above.

Traditional statistical techniques are an alternative to neural network analysis.
However many assumptions must be made of the data, and these techniques are insensitive to
nonlinear processes. Neural network analysis techniques do not make a priori assumptions
about the input data, and are sensitive to nonlinear characteristics, which are found in
biological recordings. As a result, neural network analyses have the potential to provide
greater accuracy in the classification of complex and nonlinear data, such as found in brain
recordings,' than the traditional statistical techniques.
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Category Learning in a Hidden Pattern-Unit Network
Model

Joshua B. Hurwitz
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Learning Abilities Measurement Prograum

The major goal in research on individual differences has been to identify
cognitive abilities underlying tasks that humans perform. In the traditional factor
analytic method, abilities are deduced by analyzing the variance shared by a set of
standardized tests (e.g. Tirre & Pena, in press). However, in the approach taken here,
abilities are built into process models, rather than being inferred from factor analysis.
Such models are used to generate predictions of performance on a simple cognitive task.
Individual differences can be indexed by comparing how well models with differing
mechanisms fit data from various kinds of subjects. Also, such differences can be
measured using the estimated values of free parameters in a model.

Another distinction between the factor-analytic and process-model approaches is
in the type of data collected. Rather than analyze results from several standardized tests,
as in the factor-analytic method, a process model is tested on an artificial task that is
related to many human activities. The task employed here, category learning, relates to
most types of processing, including identification and recognition (Nosofsky, 1988). In
fact, it is difficult to conceive of a process that does not involve classifying a stimulus.

In artificial category learning, a subject is given a series of trials in which they
are trained to classify a set of stimuli. On each trial, a stimulus is presented and the
subject is asked to respond with a category label. After the response is made, the subject
is told the correct category.

One aim in modeling category-learning data is to predict trial-by-trial
categorization probabilities from a group of subjects. In order to accomplish this, the
model and all subjects in the group must be trained using the same trial sequence. This
provides a more rigorous test of the model than presenting a different random sequence
to each subject and having the model predict averages over blocks of trials. Being
required to predict trial-by-trial performance forces the model to take both category
structure and training history into account when it generates an acquisition curve.

The model presented here, the Hidden Pattern-Unit Network model (HPU),
incorporates three mechanisms that are currently being studied in category learning:
pattern storage and retrieval, non-linear similarity (Estes, Campbell, Hatsopoulos &
Hurwitz, 1989; Kruschke, 1992; Medin & Shaffer, 1978; Nosofsk-y, 1988), and error-
correction learning (Gluck & Bower, 1988). HPU assumes three levels of representation:
feature nodes, hidden pattern-units and category nodes. Each feature node has a
weighted connection to all hidden pattern-units, and every hidden unit has a weighted
connection to each category node. The hidden pattern-units store previously presented
training patterns, and a new hidden unit is created each time a novel training pattern is
presented.

When presented with an input pattern, the model activates the feature nodes,
hidden units and category nodes, and then computes categorization probabilities. For
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Figure . The Hidden Pattern-Unit Network Model.

the example shown in Figure 1, each feature node detects which one of two features is
present in the input. In this example, the input patterns are 4-letter non-words, and there
can be one of two possible letters present in each position of a non-word. One letter

produces an activation of I on its corresponding feature node and thter produces and
activation of 0.

The model activates a hidden unit based on the similarity between the input
pattern and the pattern stored at that unit. The activation of hidden unit h is

ah = _si I ai -ah (2)
i

where ai is the activation of feature node i, aih is the value for the corresponding feature
stored at hidden unit h, and si is the similarity parameter for node i. The similarity
parameter is a logistic function of its corresponding feature weight, so that

1 + e"[Vi+CT]

where vi is the weight on feature-node i and CT is a free parameter (-ao < cT < cc).

After activating hidden units, the model computes outputs to the category nodes
and transforms the outputs to categorization probabilities. At the category level, the
output function is the one used by Gluck & Bower (1988), and the probability function
is the one used in Estes et al. (1989). The output for category node k is
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ok = XahWhk (3)

h

where Whk is the weight connecting hidden-unit h and category-node k. When presented
with input pattern x, the probability of giving category Ck as the response is

eCOi

where the sum is over all category nodes and c is a free parameter (c > 0).

After computing categorization probabilities, the model learns based on feedback
from a teaching signal. For learning at the category level, the model uses the delta-rule
function (Gluck & Bower, 1988):

Whk, +l = Whi, + (zk - ok) ah PH (5)

where t is the trial number; PH, the hidden-to-category learning rate, is a free parameter
(0 :< PH _< 1); and zk, the teaching signal, is I when category Ck is the correct category,
and 0 otherwise. For learning at the feature level, the model uses back propagation, so
that

Vi, t+l:Z = vit + (1- si)PFZ ai - aih I dhah (6)

h

where PF, the feature-unit learning rate, is a free parameter (PF > 0), and dh, the
propagated error, is

dh ,(Zj - Oj)WhJ . (7)
j

In testing HPU, the focus was on analyzing the feature-learning mechanism
shown in Equation 6. As a comparison model, a non-feature-learning version was
developed in which there is one feature weight, v, for all features. In this case

ah =TIs I ai- aihl (8)
i

and

v1+1  = v1+ (1-s)f3F{Idhah [ , aiaahI]} (9)

h
where

I
S =(10)

1 + e-[V+CTI

Both models, HPU with and without feature learning, were fitted to data from a
320-trial category-learning task. On each trial, a subject was presented with a non-word,
was asked to classify it into category A or B, and, after responding, was given the correct
category. Non-words beginning with the letters CE or LI always belonged in category A,
whereas those beginning with CI or LE were always in category B. Thus, the first two
positions of each non-word were "globally relevant" for categorizing.
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Ejgigrc.2. Acquisition curves for the solvers, and model fits for the two versions of HPU.
Each data point is an average over all solvers for a block of 10 trials. The trial divisions
are demarcated by the vertical lines.

The last two positions were occasionally relevant. Non-words ending in VU or
TO were in category A for the first division of 80 trials, and were in category B for the
third such division. However, for the remaining trials, these non-words ocaured equally

often in each category. Non-words ending in VO or TU followed this same sequence,
except that they were in category B for division 1 and category A for division 3.

Using these criteria, a single sequence of training trials was generated, and all

subjects were trained with this sequence. However, the positions that were globally
relevant were varied from subject to subject to prevent positional biases from influencing
the results

For the results, one focus was on the requirements for producing optimal
performance on this task. If, by the end of the second division of 80 trials, the learner
was using only globally relevant letters to categorize the non-words, then performance
would be perfect throughout the remainder of training. However, if the learner was using
at least one other letter, then performance would falter in division 3.

Figures 2 and 3 show the data for two groups of subjects, those who gave the
correct categorization rule at the end of training (solvers, N=1 8), and those who did not
(non-solvers, N=16). The solvers' performance climbed steadily early in training, and
asymptotically exceeded 90% (Figure 2). The non-solvers' performance dropped at the
beginning of division 2, and rose in a zigzag fashion in the next two divisions (Figure 3).
It also dropped in division 4, even though the subjects had been previously presented
with all 16 non-words.

As Table 1 and Figure 2 show, the feature-learning model was better than the no-feature-
learning model at fitting the solvers' data. In particular, the feature-learning model was
better at predicting the solvers' ability to generalize at the beginning of division 3. The
other model showed a decrement in performance in this part of the training sequence.
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Model Solvers Non-Solvers
Beginning of

Overall Div. 3 (Blk- 12) Overall

Feature learning 0.11 0.09 0.18

No feature learning 0.14 0.28 0.18

Table 1. The trial-by-trial standard errors of the model fits for HPU.

The reason HPU predicted solvers' performance better with feature learning than without
it can be seen by assessing the value of si at the end of division 2. The lower the value of
si, the more the model is "attending" to feature i. In the feature-learning model, the
average si at the end of division 2 was 0.15 for the two globally relevant letters and was
0.51 for the remaining two features. Thus, the use of feature learning in HPU allowed
the model to use only the globally relevant features and to ignore the features that had
been irrelevant right before division 3.

Although the addition of feature learning improved the fit of HPU to the data,
neither the feature-learning nor the no-feature-learning model gave as good a fit to the
non-solvers' data as it had to the solvers' data (Table 1). Both versions of the model
produced similar acquisition curves, and these curves were too smooth compared to the
data. For example, the data curve showed a sharp drop at the beginning of division 4,
whereas the model curves showed a continuous increase from division 3 through division
4 (Figure 3).

One possible reason for this lack of fit could have been that the solvers and non-
solvers were not using the same learning rule. The evidence for this was that a "non-
interactive" learning rule provided a better fit than the delta rule to the non-solvers' data
(Hurwitz, 1990). Unlike the delta rule, which, like multiple regression, estimates
weights by minimizing an error, the non-interactive rule minimizes a different error for

1
03 no feature learning
Sfeature leaming

*" 0.9 data
_ 0.9

0
. 0.80o.7

C13
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0 9
0. 0.6 P 9

0.5 -- - -- -- -

1 9 17 25
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Figure_3. Acquisition curves for the non-solvers, and model fits for the two versions of
HPU. The trial divisions are demarcated by the vertical lines.
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each hidden unit. This produces a form of interference whereby associations built up
early in training are eliminated by later training. This interference led the model to
predict a drop in performance at the beginning of division 4.

Though the use of feature learning in HPU appeared to improve the model's fits
to the solvers' data, this model has problems as well. The use of back propagation can
lead the model to alter its feature weights, even when subjects do not appear to alter
which features they consider important. For example, consider the above experiment,
except that the categories are reversed in division 3. Thus, in division 3, non-words
beginning with CE or LI are in category B, those beginning with CI or LE are in
category A, those ending with VU or TO are in category A, and those ending with VO or
TU are in category B. When presented with such a shift, a solver could either continue
to use the globally relevant positions (I and 2 in this example), and just alter category
associations, or could switch to other positions. When a reversal was implemented in a
second experiment, solvers behaved as if they were doing the former, and the HPU
feature-learning model did the latter.

The effect of reversing the categories could be seen by looking at results from
test trials presented periodically during training. These trials were just like the training
trials, except that no feedback was provided. Also, the non-words used on test trials
consisted of letter pairs from different categories. For example, in division 3, one test
pattern, CEVU, would be an aabb non-word, in that the first two letters were presented
in category A during division 3, and the other letters were presented in category B.

Post-reversal test trials were used to identify which letters subjects employed to
categorize the non-words, and pre-reversal test trials were used to identify subjects who
had successfully solved the problem. A solver was defined as a subject who had
achieved perfect performance on 4 test trials immediately preceding the reversal, and
who had achieved at least 80% correct on the last 16 training trials preceding the
reversal.

Figure 4 shows that in division 3, after the reversal, the probability of making a
category-A response given an aabb test pattern, P(CAlaabb), was higher for the solvers
than for the modf.l, and P(CAlbbaa) was lower for the solvers than for the model. The
reason for this was that after the reversal, feature nodes for the globally relevant positions
of each non-word had a higher average value for si (0.65) than did nodes for the other
positions (0.07). The oppls - ad occurred before category reversal, with average si
being lower for nodes in the globally relevant positions (0.06) than for those in the other
positions (0.54). When the reversal occurred, negative error flooded the network at the
feature level, leading to a reversal of the feature weights. Thus, category reversal
changed which letters the model considered "important," whereas it apparently had no
such effect on the subjects.

This result was replicated in another condition in which subjects were presented
with figures instead of non-words. The figures varied in shape (square versus triangle),
size (large versus small), number (1 versus 2) and position (top of computer screen
versus bottom). As with the non-word stimuli, the solvers and the model appeared to
"attend" to different features after the reversal (Figure 4). Also, as with the non-words,
the model's average si after the reversal ,.: Ilier for globally relevant features (0.46)
than for the remaining features (0.20).
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FigureA. Division-3 (post-reversal) test-trial data and predictions for reversal study. The
data are from subjects who had solved the problem before the reversal. (N=37 in the
non-word condition, and N=60 in the figure condition.)

The outcomes of these studies demonstrate the usefulness of the process-model
approach for identifying cognitive abilities, and for indexing individual differences. One
important result was that, among all of the models, HPU with feature learning was the
best at predicting the solvers' performance in the first experiment. Without feature
learning, the model could not maintain a high level of performance in the third division
of training trials.

Even though HPU with feature learning accurately predicted the solvers'
acquisition curve, it was not as good at making other predictions. First, it produced
inferior fits to the the non-solvers' curve. One reason for this may have been that the
solvers and non-solvers were using different learning mechanisms. However, the model
even fell short in predicting the solvers' performance in the second experiment. When
confronted with a category reversal, HPU incorrectly predicted that the solvers would
change which features are important for categorizing.

These results show that given hidden units that store patterns, a back propagation
model that learns which features are relevant can provide accurate predictions of training
performance. However, such a model does not always adapt as humans do to changes in
category structure. Perhaps the appropriate model would be one in which the feature
learning rate (PF) decreases to near 0 once asymptotic performance has been achieved.
Such a model might account for the fact that subjects do not appear to alter which
features they consider important when categories are reversed. This dynamic-learning-
rate assumption is currently being explored.
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§0 Motivation

Neural network technology has been successfully applied to recognition and
classification problems. For example, neural networks have been used to recognize hand
written letters and digits. A neural network has a structural component and a quantitative
component. Techniques for both "structure learning" and "weight learning" have been
developed for neural networks, although the second topic is much more developed [Ash
89][Frean 90][Karnin 90]. The structure of these networks are thought by many to be
models of organic neural structures. Despite the possible connections to organic neural
structures in application to recognition and classification, the structure of these networks
bears no clear relation to the causal structure governing the variables involved. Such
networks cannot be used (in any obvious way) to predict the effect of interventions or
policy changes.

Bayesian networks form another related technology used in the artificial intelligence and
statistics communities. Bayesian networks are useful in classification and prediction
problems. Some of the advantages of using Bayesian networks are the following; There is
no need to predetermine the inputs and outputs, that is, a Bayesian network can be used as
a classifier for any set of variables in the network and the inputs for that classification can
be any subset of the remaining variables in the network. This feature is useful in making
classifications where only partial information is available. In addition, the time to
parameterize a network -- this process is similar to training a neural network -- is linear in
the size of the data set. Given a Bayesian network that correctly represents causal
connections among variables one can make qualitative and quantitative predictions on the
effects of an intervention or policy change[Spirtes et al 92]. Perhaps most importantly,
given some weak assumptions, there are provably reliable algorithms for constructing the
network structure.

This paper considers two questions;
1) What are the relations between Bayesian networks and neural networks? We show

that a broad class of neural networks are in fact Bayesian networks.
2) Is it important for classification and recognition problems to use a network that does

not misrepresent the causal relations among variables? We will show that the correct
representation of the causal structure does matter even for recognition and classification
problems.

I Research for this work was funded by the Navy Personnel Research and Development Center and the
Office of Naval Research under grants #N00014-88-K-0194, N00014-89-J-1964 and #N00014-91-J-1361.
We thank Clark Glymour and Peter Spirnes for comments and suggestions on this paper.
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§1 The connection between Neural networks and Bayesian networks

§1.1 Neural networks

Neural networks have become popular in the artificial intelligence community
principally for two reasons: one, they are thought by many to be interpretable as models of
organic neural structures, and two, they have been made to "learn" a variety interesting and
difficult classification tasks. Although the specifics can vary, neural networks have roughly
the following general form. (figure 1).2

Input Nodes

Hidden Nodes

Output Nodes

Figure 1

There is a layer of input nodes, a layer or layers of "hidden nodes," and a layer of
output nodes. The connections between the nodes are usually directed, although they need
not be. Each node has a certain "activation level," and each connection between nodes has
an associated "weight." The activation level of non input nodes is some function of the
nodes that feed into it. This function may have a stochastic component. The general form of
the function is usually fixed ahead of time, and the class of functions that determine a
particular node's activation level is then parameterized by the weights. For example,
suppose node yi is connected to nodes xl-xj, where the weight associated with a node from
xj to yi is written wij. We might specify that the class of functions connecting yi to its
inputs is linear:

j

Yi= wi,kxkk I

Alternatively, we might specify that it is quadratic:

J
yi = I Wi,k(Xk2+ Xk)

or we could specify some other function.
The network "learns" by changing the weights in order to improve its predictive

ability.3 Neural network learning is therefore a form of parameter estimation, and is
explicitly treated as such by many researchers [Nowlan 91].

2 See the text by [Feeman and Skapura 91]. for example.
3 Much of the research in the field today concerns particular learning schemes and their properties.
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If the network were only two layers, one for inputs and one for outputs, then the
problem of describing the general properties of the network and its training regime would
be fairly simple. The class of functions from inputs to outputs it could possibly learn would
be given by the pre-specified class of functions connecting the outputs to the inputs, and
the properties of various learning schemes, or estimators, would be more or less
understood. If there are "hidden nodes" and the network is more than two layers, however,
the overall function connecting the inputs to the outputs is really a composition of the
functions connecting each layer inbetween. Not all functional classes are closed under
composition, and in some cases the class of functions computable by a network is not
known. The same analysis holds if one considers the network as stochastic. A distribution
can be given for the input nodes, and the non input nodes can be pre-specified to have
some class of conditional distributions on nodes feeding into them, parameterized by the
weights. But not all families of distributions are convex, and thus a network of more than
two layers might be capable of learning a space of joint distributions quite different from
the family specified between layers.

Nevertheless, by specifying the topology of the network and the family of functions
connecting nodes to their inputs, one picks out some region in the space of all possible
functions from inputs to outputs (figure 2).

The set of all possible

A = functions from inputs to

outputs

Functions possible for a given

B = network, i.e., a given topology
and class of functions between
layers

Figure 2

Learning the weights amounts to trying to find the point in this region that minimizes
some loss function or that maximizes some likelihood function. The weights are given a
default value, and then incrementally modified according to any of a variety of schemes,
e.g. back propagation, annealing, etc.

Network topology is important in that it defines the class of functions that are learnable.
If one is wrong about the region of functions to be estimated, then no learning procedure
can help (figure 3).

. ......... ...[ i i. . . A ctual
~I ................ fuii~ inction

..... for weights

for weights
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Figure 3

§1.2 Bayesian networks

A Bayesian network is usually defined to be a tuple <G,P> where G=<V,E> is a
directed acyclic graph over the vertices V and with the edges F. P is the probability
distribution over the random variables which correspond to the vertices of the graph G.
Each directed acyclic graph G=<V,E> represents a set of probability distributions, each of
which can be factored according to the following rule,

m H= n P(xl irx
XE V

where n. is the set of parents of x in G. Consider the following example.

Smoke (S)

Yellow Fingers (Y) Lung Cancer (L)

Figure 4

The joint probability distribution over the variables S, Y and L factor into the following
equation. P(S,Y,L) = P(S) P(YIS) P(LIS). Let each of the variables be Boolean variables
where S takes on the values s or -s, L can take the values I and -1 and Y can take the values
y and -y. One possible joint distribution is given below.

P(s) = 0.25
P(-s) = 0.75

P(yls) = 0.7 P(~yls) = 0.3 P(ls) = 0.05 P(-lis) = 0.95
P(yl-s) = 0.1 P(-yl-s) = 0.9 P(il-s) = 0.16 P(~lI-s) = 0.84

As mentioned earlier, Bayesian networks are useful for predicting the effects of a
manipulation. One might wish to asses the effect of manipulating the value of yellow
fingers (Y) for members of a given population on the incidence of lung cancer (L). For
instance, one might institute a policy of finger bleaching for all smokers. Given the
Bayesian network in (figure 4) it is clear that the manipulation would have no effect of the
prevalence of lung cancer. For a more detailed discussion of predicting the effects of
manipulations see [Spirtes et al 1992] and [Spirtes et al 1993].

TETRAD II's Build procedure constructs Bayesian networks from data and any prior
knowledge the user may have about the domain. We know that under weak ass'imptions
the procedures i1i TETRAD HI are asymptotically reliable, i.e., given the correct background
assumptions, the probability that they will identify the correct equivalence class of
topologies converges to one in the limit as the sample grows without bound.

§1.3 Neural networks and Bayesian networks

If the connections in a neural network are directed and there is no feedback, then the
neural network is a Bayesian network. The difference is that in the Bayesian networks
TETRAD II constructs there are no a priori constraints on the class of functions relating an
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effect to its immediate causes. The only constraints on the region of functions the Bayesian
network can compute is given by the topological -- i.e. graphical -- structure of the
network, and these are to conditional independence constraints.

In a directed neural network without feedback the inputs precede the outputs (figure 1).
But in using a Bayesian network, the inputs might be effects of each other and of the
outputs. For example, were TETRAD II to construct a Bayesian network among variables
xl, x2, yl, and y2, it might look as follows:

yl • xl

x2 y2

Figure 5

Despite the fact that the "outputs" precede the "inputs" one can use this (or any acyclic
Bayesian network) Bayesian network to make predictions for any set of variables from any
other set of variables with an inference process called "updating."

One of our research aims is to find ways that TETRAD U's Bayesian network builder
or related algorithms can aid in specifying neural network topology, and do so in ways that
are provably reliable. Converting Bayesian network topology constructed by TETRAD UI
to a neural network is often not straightforward and may not always be desirable. One
protlem is that in a neural network me inputs must precece me outputs, DUt there is no
guarantee that this will be the case in any of the Bayesian networks constructed by
TETRAD II.

The advantage of a neural network formalism is that once the weights are determined
using the network to predict outputs from inputs requires very little computation. In
Bayesian networks, by contrast, prediction by "updating" may require a large amounts of
computation; a great deal of work has been done to improve updating speed using Mcnte
Carlo methods.

A second fundamental problem is that in many cases the TETRAD IH Build procedures
indicate the possible presence of latent, unmeasured variables, and in such cases the
algorithms do not produce a definite network. If the user has some prior knowledge 4s to
which measured variables share a common, unmeasured variable, another procedure in
TETRAD 1H, MIMbuild may in many cases be used to build a definite network.

§2 Bayesian networks as classifiers

Bayesian networks are commonly used as classifiers. In this section we will briefly
describe one method of using Bayesian networks as classifiers. A training list, denoted by
T, is a list of samples which is used to parameterize or "train" the Bayesian network. A
sample point corresponds to one array of values for each of the variables (vertices). As
mentioned above, each directed acyclic graph G=<V,E> represents a set of probability
distributions, each of which can be factored according to the following rule,

PM rI(x IXtx)
XEV

where tx is the set of parents of x in G. For a given training list T, the maximum likelihood
estimate of the probability distribution over the variables V is obtained by substituting the
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frequency of x given irx in the training list T for P(x I 7r,) 4 This is how the ESTIMATE
procedure of TETRAD II parameterizes the network. 5

Consider the following classification tasks. One might want to identifying which newly
admitted heart attack patients are high risk patients and which are low risk patients. 6 Given
the value of 19 variables that are measured during the first 24 hours we want to identify
(classify) whether or not the patient will survive at least 30 days. The variable that we are
interested in predicting or classifying is called the target variable, and will be denoted by
TV where the target variable TV can take on the values tl to tn. The inputs or evidence that
we use to classify the target variable is called the evidence set which will be denoted by EV.
The evidence set for the heart attack patient example would be measurements for the 19
variables.7 The classification of the TV given EV is obtained by calculating the conditional
probabilities P(TV I EV). The process of calculating the conditional probabilities is often
called updating the network.

We can now describe how one can use a Bayesian network to classify the target
variable. First update the network for the evidence set EV, then identify which values of
TV are maximal for P(TV I EV). So the classification of TV given EV (Classp(TV,EV)) is
defined as follows,

Class, (TV, EV) = {t, V(1 _j s n)P (TV = t, IEV) > P( TV= t, IEV)}

The classification of a target variable is a set of values which maximize the conditional
probability of the target variable given the evidence set. One nice feature of using Bayesian
networks for classification is that it possible to use a Bayesian network as a classifiel for
any subset of the variables in the graph. That is, the target variable need not be
predetermined. Similarly, the evidence set can be any subset of the remaining variables.

§3 Structure matters

In §1.2 we noted that Bayesian networks can be used to predict the effect of
interventions. The structure of the network is essential in calculating both qualitative and
quantitative effects of an intervention or policy change.

For the network in (figure 6a) the intervention to stop smoking will have no effect on
lung cancer. But if the network is as in (figure 6b) then an intervention to stop smoking
will, other things remaining the same, affect lung cancer.

Genotype Smoking

Smoking Lung Cancer Lung Cancer
Figure 6a Figure 6b

4 The maximum likel:Food estimate of the parameters is well defined for positive distributions. For
the results given in §3 we parameterized the Bayesian networks using the frequencies in the training list
wherever possible. Where the frequency data fails to give a positive instance of some parent set we assume
a uniform distribution over the values of the descendant of the parent set.

5 See [Herskovitz 911 for a Bayesian estimation technique.
6 This problem was studied by [Breiman et al 19841.
7 Even if the measurements for all of the variables is not available it is still possible to classify the

target variable. We simple define the evidencc set to be the subset of the variables for which we know the
values.
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In this section we show that structure also matters for classification using Bayesian
networks, that is, using the correct structure to classify lowers the expected number of
classification errors.

§3.1 Measuring Error

Given the "true" Bayesian network that describes the relationship between the variables
V in the graph we can measure the expected error of classification. Since there is a
stochastic element involved one would certainly not expect there to be no classification
error. One straight forward measure of the expected error is called Bayes error. The Bayes
error for classifying the target variable TV from EV = V\{ Y } where TV has n possible
values, tl,..,tn is BE(P,TV) 8 P is the joint distribution over the variables V of the true
Bayesian network.

BE(P,TV)= X[{1-max{P(T7TV= ,X= x)})lX = x)I

Intuitively, the Bayes error is the sum of the expected error for each of the possible
instantiations of the evidence set EV with respect to the true joint distribution P(V). The
expected error in classification for x E EV is simply I minus the conditional probability of
the classification provided by the Bayesian network given the probability of that
instantiation of the evidence.

We can generalize this formulation to compare the relative Bayes error (RBE) for a
given probability distribution (PI) relative to the "true" distribution (P2). Again, TV is the
target variable and EV = V\{Y) and Pl and P2 are distribution over V. Let Cl(x) =
Classpl({TV},x) and cl to cm be an enumeration of CI(x).

PE2P, .P2.TV.x) 15 Y I___ ,

RBEP,.P2 .TV)= Y, PE(P,.P2.TV.x)
. EV

Note that RBE(PI,PI,Y) reduces to BE(PI,Y) and that RBE(PI,P 2,Y) > BE(P2 ,Y) for
all PI, P2 and YE V. Again, more intuitively, the relative Bayes error is the sum over all
instantiations in the evidence of the probable errors (PE) of the classification of TV on a
particular instantiation x E EV. The probable error is simply the probability that the
classification from distribution PI will be incorrect if the true distribution is in fact P2.

§3.2 Design of Experiment

The empirical data described in §3.3 below was obtained from the experiment described
in this section. The experiment uses the Monte Carlo generator, the Estimate procedure,
and the Makemodel module of TETRAD I1. For all that follows, Y is the target variable and
the evidence set EV = IX 1,X2 }. Each of the variables can take on three different values.

Experiment I - Let the true graph be G I shown in (figure 7).
(1) We randomly parameterize the graph according the factorization described in §1.2 to

obtain the "true" distribution Pt.
(2) From this distribution we can calculate the Bayes error, BE(P1,Y).

S A discussion of Bayes error can be found in (Breiman et a] 841.
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(3) Using the Monte Carlo generator we generate a training list T of 1000 sample
points. Recall, a sample point is an instantiation of all of the variables in the graph.

(4) Using the training list T we parameterize each of the graphs G I through G5 to
obtain the distribution PI to P5.

(5) Now we can calculate the relative Bayes error for each of these estimated
distributions, RBE(Pi,Pt,Y) for 1 < i < 5.

(6) Since the Bayes error will vary depending upon the true distribution we use the
Delta Bayes error (DBE) to describe the deviation in classification error for the different
distribution relative to the true distribution. (where DBE(Pi,Pt,Y) = RBE(Pi,Pt,Y) -
BE(Pt,Y)). This sequence of operations (steps (1) through (6)) is carried out 20 times.

Experiments 2-5 - These experiments differ from experiment 1 only in that we assume
that GX is the true graph in experiment X.9

y X1I X2 X1I X2
GI: Gr\2: Gi 2 3: X X

XI X2 Y Y

X l- X2 XI Y
G4: 0,,pt G5: 11'

y X2

Figure 7

§3.3 Empirical Results

The experimental results given in (figure 8) indicate that structure does matter up to a
point. For each experiment we give the mean delta Bayes error and standard deviation (sd)
for the delta Bayes error for each graph. The bold numbers in each "mean DBE" row are
the lowest values obtained. In each case, the graph with the correct structure did at least as
well as any of the other graphs. The average penalty for classifying with the incorrect graph
was an increase in expected classification error from 0.0 to 6.9 percentage points. Observe
the pair of the columns G I and G2 for each experiment. The results are identical. This is
not surprising since the independence constraints imposed by the topology of these graphs
are identical. Now observe the pair of columns G2 and G3. These too are identical. In this
case, the independence constraints imposed by the two graphs are not the same. A general
theory as to what structure does matter has been worked out but is too complicated to
discuss here. (See [Meek 93])

9 We have run these experiments with different sample sizes and graphs on four variables with similar
results.
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Experiment 1
GI G2 G3 G4 G5

Mean DBE 0.0007 0.0010 0.0007 0.0010 0.0697
sd of DBE 0.0013 0.0018 0.0013 0.0018 0.0539

Experiment 2
G 0 G2 G3 G4 G5

Mean DBE 0.0318 0.0025 0.0318 0.0025 0.0568
sd of DBE 0.0301 0.0025 0.0301 0.0025 0.0565

Experiment 3
GI G2 G3 G4 G5

Mean DBE 0.0016 0.0016 0.0016 0.0016 0.0691
sd of DBE 0.0043 0.0036 0.0043 0.0036 0.0791

Experiment 4
G1 G2 G3 G4 G5

Mean DBE 0.0490 0.0029 0.0490 0.0029 0.0481
sd of DBE 0.0415 0.0038 0.0415 0.0038 0.0426

Experiment 5
G 1 G2 G3 G4 G5

Mean DBE 0.0535 0.0017 0.0535 0.0017 0.0016
sd of DBE 0.0593 0.0027 0.0593 0.0027 0.0026

Figure 8

§4 Conclusions and Further Research

In the preceding section we have given empirical evidence for the claim that network
structure matters for classification and prediction. It was shown that using the correct
structure to parameterize a Bayesian network improves the classification accuracy of
Bayesian networks. This is empirical evidence in support of using reliable methods for the
discovery of network structure (topology). As mentioned earlier, the network constructor
in TETRAD II is asymptotically reliable under weak assumptions. The results of these
experiments shows that structure does indeed matter at least for stochastic neural networks.
The informal argument given in §1.1 about the importance of network topology for
classification with neural networks combined with the empirical evidence suggests that the
topology for all types of neural networks is important for prediction, classification and
recognition.

This leads to several open research questions. Given the natural connection between
neural networks and Bayesian nctworks, how can one adapt techniques for constructing
Bayesian networks to the domain of neural networks? Can neural network construction
techniques improve Bayesian network construction methods especially in the case where
there are latent variables? Are there more general techniques for the construction of network
topology? In addition, much work needs to be done to formalize the analysis of both cyclic
neural networks, cyclic Bayesian network and the connections between the two.

There are several issues that need to be addressed about prediction and classification
with both Bayesian and neural networks. For instance, what is the variance of the
prediction or classification for training sets of different sizes for both Bayesian and neural
networks? In addition. which classification, prediction and recognition domains are
particularly well-suited for the Bayesian network technology and which are better suited for
neural network technology?
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Applications of SLEUTH
to Navy Manpower, Personnel and Training Data

Janice D. Callahan' and Stephen W. Sorensen'

Abstract

The Navy Personnel Research and Development Center
(NPRDC) developed an automated exploratory technique for
categor.Lcal data, SLEUTH, that locates artifacts in large
data sets. SLEUTH's accuracy rate is over 75% on
published problems. We describe the development of
SLEUTH, drawing lessons we learned from two existing
programs. We apply SLEUTH and those two programs to Navy
problems much larger than any in the literature and
discuss the new evaluation methods required for large
data sets.

Purpose

Examples of Large Data Bases

The United States Navy, like every organization, collects data
as part of the normal course of business. For example, the Navy
Integrated Training Resources Administration System contains data
on each training course the Navy teaches and each student going
through the courses. For research purposes, the Navy Personnel
Research and Development Center (NPRDC) restructures the data into
a more useable form. The student data is collected into a file
called TRAINTRACK that is a longitudinal historical data base of
training incidents by Social Security Number. The training history
of any Navy person from recent enlistee to admiral can be accessed
by typing in his or her Social Security Number. Currently
TRAINTRACK contains ovei 1,500,000 records and 65 elements per
record. The file can be os!d to answer research questions such as
the causes of attrition t:om training.

Other data sets are collected for special purposes and can be

'Callahan Associates Incorporated, San Diego, CA.

2Navy Personnel Research and Development Center.

This research was partly performed under contract N66001-91-D-9507
that Systems Engineering Associates, San Diego, CA has with the
Navy Personnel Research and Development Center. The opinions
expressed in this paper are those of the authors, are not official,
and do not necessarily reflect tle views of the Navy Department.
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used for research. The Youth Attitude Tracking Survey (YATS) is an
annual survey of 18 to 25 year olds on their likelihood of
enlisting in the armed forces. Over 10,000 individuals are surveyed
each year, and each is asked up to 500 questions. To assist in
research, the Social Security Numbers are matched with later
enlistees. Using the file and the later match, a researcher can
investigate questions on advertising effectiveness and other
influences on enlistment.

Applying the Scientific Paradigm

How should a researcher approach these large files? The usual
scientific paradigm is that a researcher forms a hypothesis about
relationships (such as cause and effect). Then the researcher
decides the data that he or she needs to test the hypothesis. Next
the data is collected. Statistical techniques applied to the data
allow the researcher to accept or reject the hypothesis. If
possible the researcher builds a model from the data. An accepted
(or rejected) hypothesis and a model advance the theory. Finally in
an attempt to extend theory, the researcher forms a new hypothesis
and begins the cycle again. A significant feature of the scientific
paradigm is that the researcher selects his or her own data. Both
the data selection and the hypothesis are necessary to advance
theory.

One way to follow the usual scientific paradigm on large pre-
existing files is the following: Form a hypothesis that can be
answered by data in the file. Then continue as before. Extract the
data from the file, statistically test the hypothesis, build a
model, and advance theory. Unfortunately, following this paradigm
on pre-existing files means that the hypotheses and theory must
necessarily become skewed. Many important hypotheses will never be
tested because a hypothesis must be limited by the data at hand.

For example, using TRAINTRACK the researcher has no influence
on what data are collected; those choices are made for the purpose
of Navy management. All that the researcher can do is decide which
data elements to extract from the management files. For the case of
YATS, a researcher involved in setting up the survey can pick
questions to ask. But in practice most military researchers get the
data after the survey is completed and have no input in the
structure of the questionnaire.

On the other hand, the data in large pre-existing files are
almost certainly greater than anything a researcher will collect
alone. Consequently many additional hypotheses are available for
testing if the researcher can imagine them. But practical
difficulties with this approach include:

1) Most statistical techniques and model structures involve
a limited subset of variables (usually fewer than 10).

2) When the researcher picks variables from the data set,
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human biases and preconceptions are sure to intrude.
3) And, the analysis of a large data set is a labor

intensive process that quickly tires the most dedicated
researcher.

Exploring a New Paradigm

So we come to a new scientific paradigm: Use statistical and
computer techniques to automate the process of iorming a
hypothesis, testing a hypothesis and building a model. Apply the
automated techniques to the entire data set. The researcher then
analyses the results of the automated technique and uses those
results to establish theory. This paradigm is usually dismissed
with the pejorative "empiricism", but the practical reality of the
existence of these large data bases in the Navy and elsewhere mean
that the new paradigm must be examined.

Under the new paradigm the researcher's domain knowledge,
including knowledge of theory, is replaced by the computer's
ability to do a total or near-total search. The computer formulates
and tests a large set of hypotheses or models -- all of those in
the class that it was designed to consider.

The goal of this paper is to examine the question: Can a
completely automatic discovery system develop good explanatory
models in large data bases?

Methods

This 1993 Neural Network Conference contains many papers that
use neural networks to build models on non-linear data. For the
most part, these models are extremely accurate, for reasons that
are only now being understood. The neural network models are not
yet very interpretable, although several researchers are
progressing in this area. Consequently neural networks seem best
suited to applications that emphasise accuracy rather than
explanation.

This paper focuses on interpretable models and that takes us
into the field of symbolic processing which sometimes rivals and
sometimes complements neural networks.

To explore the question about whether a completely automatic
system can build good models, we describe the application of three
systems to Navy data sets. Two of the systems, CART and TETRAD II,
were built outside the Navy (although recent development on TETRAD
II was partly funded by the Navy). The third system SLEUTH was
built at NPRDC based on our experiences with the other two systems.
We apply the three systems to Navy data bases and evaluate them
based on the interpretablity of the results, the richness of the
models, and their ease of use.
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Results

Classification and Regression Trees (CART)

Breiman, et.al. (1984) developed Classification and Regression
Trees (CART) to apply tree methods to classification and later
regression. Earlier work along the same line included Automatic
Interaction Detection (AID) and a revised program, THAID, at the
Institute for Social Research, University of Michigan. Breiman,
et.al. argued that a data set is interesting not only because of
its size, but also because of its complexity. Complexity includes
high dimensionality, a mixture of data types, nonstandard data
structure, and non-homogeneity (where different relationships
between the variables hold in different parts of the space). They
believed that trees captured much of this complexity.

The CART work is very similar to the famous ID3 algorithm in
machine learning (Quinlan, 1986). The principal difference seems to
be that CART has a stronger statistical foundation. Meyrowitz
(1991) states that the accuracy of models built with ID3 is
comparable to the accuracy of models from neural networks.

We were faced with a problem of analysing a group decision-
making process consisting of complex data and a changing group of
decision makers. Each year Navy planners meet to determine advanced
skill training requirements for over 1200 courses. The planners
include budgeters, individuals who assign personnel to training,
representatives of the training commands, and managers who set the
shape and strength of the personnel force structure.

We wanted to understand the decision process that was occuring
in the hope of improving the quality of the decisions and
shortening the time required to make a decision. But we also wanted
to set the stage for replicating the decisions of the group during
the course of the year and assisting other groups in later years.

The decision trees in CART seemed strikingly similar to the
trees in expert systems. We believed that if we could capture the
decision-making in a tree, then we could incorporate it into an
expert system. In Callahan & Sorensen (1991) we described our
application of CART.

The planners consider data that describe present and future
requirements in the fleet for different personnel skills, the
current inventory by paygrade, previous training plans and previous
utilization of training courses. They also bring to the conference
personal information that is not found in the data, such as whether
they are getting phone calls from the fleet about shortages in the
skill. Figure 1 shows a regression tree using their input data and
using their decisions as a response variable. The tree sets the
plan based on existing data that the planners had during one year.
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Figure 1. Estimate the Size of New Training Plans Using CART

In the task of analysis we realized that the planners seemed
to be anchored on the previous year's plan -- they used it over 40%
of the time in setting a new plan. We applied the classification
tree methodology in CART to develop a tree (Figure 2) that shows
when the planners used the anchor and when they set another figure
as the plan.

We learned several lessons from our experience with CART.
First we were impressed with its accuracy in a complex and
nonlinear situation. It accurately captured the non-homogeneity of
the data we were using. Straight regression would not have worked
so well. The ability to capture non-homogeneity is easily seen by
working down several branches of Figures 1 and 2. Second, we were
encouraged by CART's speed. CART builds a full tree and then works
backward to get an optimal fit. When we first began thinking how we
might build an exploratory system at NPRDC we thought that we would
need an alpha-beta algorithm or other techniques to limit search.
CART's approach encouraged us to think that we might not have to do
that.

The main negative lesson from our experience was that we had
great difficulty testing CART on messy data and when some
information is not contained in the available data. We never knew
whether to blame CART or the data for any problems. We began
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Figure 2. Decide if Change From the Old Plan Is Required

looking for cleaner Navy data to use in the future. A second lesson
was to avoid constructed variables (e.g. proportional changes).
Constructed variables required exactly the sort of domain knowledge
and trial and error effort by the researcher that we wanted to
avoid in an automated system. Langley, et.al. (1987) describe
programs that build constructed variables, but we believed that we
had to postpone that development.

In our later work we have used survey data since it seems
cleaner and the rules for constructing variables are more straight-
forward. This was simple prudence; we needed more confidence in
what we were doing before we tackled more complicated problems.

TETRAD II

Next we experimented with the discovery system TETRAD II that
was developed at Carnegie Mellon University, in part under a series
of contracts with the Office of Naval Research. Spirtes, et.al.
(1993) describe TETRAD II as a method to infer causes from
statistics. The end result is a set of path models. The program is
applicable to both linear and discrete data and can be applied to
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a hundred or more variables as long as the causal relationships
between variables are sufficiently sparse and the sample is
sufficiently large. TETRAD II does not do a total search. It uses
an algorithm to decide whether to add new paths to the model and
the researcher's domain knowledge to limit the seaich space.

We were faced with the task of analysing the YATS data set
mentioned at the beginning of this paper. Our goal was to determine
the influences on an individual's decision to join the military. We
used the 1985 questionnaire since that gave sufficient time for
respondents to join the military. 854 of the respondents
subsequently enlisted and 7625 did not enlist.

We wanted to run an experiment that completely eliminated a
researcher's decision-making from the task of model building. Our
strategy was to embed TETRAD II into an automated system that made
its own decisions. The experiment is described in detail in
Callahan & Sorensen (1992). (Note that more recent developments by
the team at Carnegie Mellon University have reduced several of the
steps in our process to a single step. Some of this development
seems to have resulted from observing our work.)

The first step was to group variables from YATS into seven
substantive clusters. These were common-sense clusters of related
questions. We later used factor analysis and got slightly worse
results. This clustering process was the only step that involved
human judgement. TETRAD II analysed the clusters and developed
candidate latent variable models. The automated system ranked the
candidate models based on output statistics and then gave the
highest ranked models to a commercial program (EQS, from BMDP
Statistical Software Inc.) for specification. The candidate model
with the highest score based on output statistics became the latent
variable for that cluster.

The seven latent variables were demographics, current job,
likely military, future military plans, future job, friends support
the military, and military advertising. Each latent variable
contained four indicator variables from the original cluster.

The next step was to build a structural equation model from
the latent variables, and the steps were similar to those followed
before. TETRAD II produced candidate structural equation models.
The highest ranked models based on output statistics were passed to
the commercial program for specification. The highest ranked models
from the commercial program became our final models.

TETRAD II does not easily handle discrete variables,
especially the yes-no type that indicates whether or not an
individual taking the YATS questionnaire later joined the military.
So we had to split the problem into two groups and look for good
models within each group. For those individuals who did not join we
got an excellent structural model from our automated system (Figure
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Figure 3. Civilian Structural Model (p=.77) Using TETRAD II

3). The response variable is future military plans and the other
variables impact that. The heavy lines in Figure 3 show causal
relationships that were consistent in the highest ranked models.

Unfortunately, for the individuals that later joined the
military we got models with low scores that were not statistically
significant. We speculated that this was because the total
population was made up of subpopulations that were influenced by
different factors (e.g. friends, current job, advertising).

We were very pleased with the outcome of our experiment. We
were able to get good models using a completely automated system.
Domain knowledge, regarded as a researcher's greatest asset, was
only used to build the common-sense clusters at the beginning and
even that step could have been automated by parsing the questions.
The selection of the best models at each step was reduced to
ranking them by output statistics.

We were also happy about using survey data. Survey data
constitutes the type of clean, relatively self-contained universe
of information that we needed for future work. The YATS survey had
one additional data item added (whether the individual joined the
military or not).
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We were impressed by TETRAD II and continue to use it in the
Navy and encourage its use by others. Nevertheless, we decided that
much of the Navy's data in survey and personnel files is
categorical data, and TETRAD II cannot easily handle that. We
decided to build our own program to explore and model categorical
data bases.

SLEUTH

Callahan & Sorensen (in review) describe the first version of
SLEUTH. The program •s designed to explore for interactions on
large multi-dimensional categorical data sets. The goal is to find
relationships between variables in the data set; no response
variable is required. In the first version of the program, SLEUTH
located two-way and three-way interactions. It also isolated
variables with no interactions.

SLEUTH processes the input data to discretize the continuous
variables and put all variables and data into a contingency table.
Then SLEUTH looks at all pair-wise contingency tables conditioned
on subsets of data. This •anerates a large number of Chi-square
test results. SLEUTH applies a Bonferroni correction to account for
multiple testing. The output orders the interactions using odds
ratios for two-way interactions and ratios of odds ratios for
three-way, interactions.

SLEUTH satisfies the criteria for an exploratory system that
we established in early experiments: SLEUTH requires no domain
knowledge of .e inputs. It works on data common in the Navy's
manpower, personnel and training community. SLEUTH does a total
search and is very fast. SLEUTH ranks the outputs based on standard
statistics. The researcher can apply his domain knowledge to
evaluate SLEUTH's outputs.

We validated SLEUTH by testing for false positives and for its
abilitiy to match published problems. On 10,000 simulated uniformly
distributed data sets, SLEUTH found interactions in only 287 data
sets. This conservative result probably comes from the Bonferroni
correction. We looked at 21 published examples from Bishop, et.al.
(1975) and Agresti (1990). For 11 examples, SLEUTH produced the
same results. In 3 other examples, SLEUTH was different but as
good. In 4 examples, the published models were xvre complicated
than SLEUTH was designed to locate. SLEUTH got a %-o,-se model once,
and had two failures.

For a practical test of SLEUTH we used the Navy-Wide Personnel
Survey (NPS). This is given annually to Navy enlisted personnel of
all ranks and Navy officers below the rank of admiral. The sections
of the survey cover personal and career information, issues
regarding rotation moves and assignment, recruiting duty, pay and
benefits, education and leadership programs, quality of life
programs, organizational climate, and AIDS education. Summary
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statistics (marginals) are presented to the Chief of Naval
Personnel and are reported in Navy newspapers.

Irn 1991 the survey was distributed to 23,821 individuals and
13,232 completed surveys were returned. The survey contained 95
questionc, We studied 31 of them. Our 31-dimensional contingency
table contained 7654 non-empty cells. SLEUTH took 5 hoLrs on this
problem using a 486/50MHz computer. It found 160 two-way and 165
three-way interactions.

Paygrade was a variable in 62 of the three-way interactions.
This seemed reasonable since officers and enlisteds likely have
different perspectives on issues, and even within each group
careerists may differ from non-careerists. We took this result as
evidence that SLEUTH was finding the obvious (an important thing to
do). Then for further analysis we broke the data set into two
parts: officer and enlisted. A researcher using domain knowledge
would have made this break before any other prccessing. Since we
did not assume domain knowledge, we let SLEUTH tell us what to
consider.

Table 1 shows the best three-way interaction that SLEUTH
found. It is an important example because it shows that an
automated exploratory program can point the way to new theory that
may be important for Navy managers and for the society at large.
The three variables are race, opinion of the detailer's knowledge
of available jobs, and the quality of formal leadership training.
The detailer is the individual who assigns a sailor to his or her
next job. Leadership training has several purposes but one
important component is enhancing a sailor's ability to deal with
other- in the Navy organization.

SLEUTH may have picked out the three-way interaction because
of the small numbers in the lower right corners of the contingency
tables under Blacks and Other races. However, even if those were
not so small, SLEUTH may have picked the interaction because of the
very large number (relative to other numbers i.n the table) in the
upper left corner of the table under Blacks. It appears that Blacks
who responded favorably to the leadership training also had
positive interactions with their detailers. This indicates that
leadership training plays a much more important role for Blacks
thtxn for Whites in integrating them into the Navy's culture. The
issue should probably be investigated further.

We are very encouraged by SLEUTH's results and we continue to
develop it along several lines. we found the reason why SLEUTH
sometimes got the wrong model on published problems and we
corrected it. SLEUTH now finds four-way interactions. We continue
to improve SLEUTH's processing speed and are changing it to work on
much larger data sets.
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Table 1

Best Three-Way Interaction From NPS

Whites

Opinion of your How would you rate the quality of the
detailer's formal leadership training you received
knowledge of in the last class you attended?
available billets

Does not apply, Poor or very poor
have not had any,
fair, good or very
good

No opinion, 4037 136
neutral, positive
or very positive

Negative or very 549 38
negative

Blacks

No opinion, 1002 11
neutral, positive
or very positive

Negative or very 102 6
negative

Other races

No opinion, 683 10
neutral, positive
or very positive

Negative or very 93 0
negative

Conclusions

We set out to explore the question of building a completely
automated exploratory system to construct models on large data
sets. Such a system goes against the usual scientific paradigm and
requires patience and tolerance on the part of researchers to even
entertain the notion. But the reality of large, pre-existing data
sets means that the possibility of using exploratory systems must
be considered.

In this paper we showed that completely automated exploratory
systems exist now and are already very powerful. Not only do they
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match published results but also they tackle problems much larger
than anyone has considered before. Furthermore they work in
reasonable amounts of computer time. They do not require domain
knowledge.

we also showed some of the limits of automated exploratory
systems. They work best on clean data sets. They can only tackle a
problem where the entire domain of the problem is encompassed
within the data. Some technical issues, such as constructed
variables, are several years away.
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Abstract Research into human cognitive processes involved in
tactical decision-making indicates a "naturalistic" model, in which
situation assessment receives greater emphasis than course of action
selection. Schema theory provides a logical framework for
analyzing situation assessment processes. This paper describes the
basis for a feed-forward/feed-lateral Knowledge-Based Artificial
Neural Net (KBANN) model of decision-making schemas.

Introduction
This paper presente preliminary results of ongoing research into neural

net models of decision-making schemas. Its primary objective is to apply new
theoretical findings from cognitive science research to derivation of novel
principles for design of future decision aids. Previous research has resulted
in a new theory of schema development and implementation (Marshall, 1991a;
Marshall, 1991b). The current research is an effort to advance schema theory,
such that it can be applied within the context of naturalistic decision model
(Zsambok, & Klein, 1992) using a Knowledge-Based Artificial Neural Network
(KBANN) approach (Towell, & Shavlik, 1990; Towell, & Shavlik, 1992). The
result will be manifested in the form of decision aid principles developed for
the Tactical Decision Making Under Stress (TADMUS) program.

Naturalistic Decision Theory
TADMUS was initiated following the incidents involving the USS Stark and

the USS Vincennes. The objectives of the TADMUS program are to improve our
understanding of how decisions are made in combat and to apply recent
developments in decision theory, individual and team training, and
information display toward enhancing the quality and timeliness of tactical
decision making. Motivation for TADMUS arose partly out of concern over a
separation between research conducted on decision making and development
of tactical decision aids. This resulted in an explicit effort to represent
advances in cognitive science in TADMUS decision aid principles.

A naturalistic decision-making model is central to formulation of TADMUS
decision aid principles. An early part of the TADMUS program involved a set
of reports considering the scope of naturalistic decision making as it occurs in
the situations addressed by TADMUS (Kaempf, Wolf, Thordsen, & Klein, 1992;
Klein, 1990; Zsambok, et al., 1992) . The nucleus of Klein's research is
predicated on a belief that cognitive functions elicited in natural settings
involves processes that are likely to differ from those found in artificial and
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contrived situations, such as psychological laboratories. A key theme,
therefore, is "that results from sterile and contrived situations may not
generalize to less constrained and more natural environments (Salthouse,
1992)."

Four striking findings emerge from the Klein analyses. First, usual
decision theory does not apply in this context. Their study of experts' protocols
suggests that only rarely can one find strategies such as those reported in the
psychological decision-making literature, Second, just two types of decisions
are made: those involving situation assessment and those involving selecting a
course of action. Third, the Kldi1 data and analyses overwhelmingly indicate
that only situation assessment presents difficulties to decision makers under
stress. That is to say, course of action decisions do occur, but are relatively
routine if the situation has already been successfully diagnosed or assessed.
Fourth, within situation assessment, two cognitive strategies -- feature
matching and story generation -- predominate over all others.

Feature matching is a situation assessment and diagnostic strategy in
which features of the current instance lead to situation recognition based on
retrieval of prior cases having the same features. This retrieval is then used
to adopt an hypothesis or to select between hypotheses concerning the nature
of the situation. Not all of the steps involved in this strategy are performed
deliberately and consciously; the distinction between perceptual and cognitive
processes is not overt. In addition, this strategy ignores a causal context for
the evidence. Instead, feature matching is strongly reliant on spatio-temporal
relationships between observed events.

A second strategy involved in situation assessment and diagnosis is story
generation, which can be described as construction of a causal model for the
purpose of inferring how a current situation might have arisen out of an
earlier state. The feature matching strategy described above relies heavily on
an ability to match a set of features extracted from the environment with a set
of features retrieved from memory (in the form of prior cases). This implies
that the extracted featu:,es are assembled into a pre-existing structure. Story
generation is used in cases where such a pre-existing structure is not (readily)
available. There may be uncertainty or ambiguity related to the situation, or
the situation may be judged as unfamiliar, either condition resulting in an
inability to assemble extracted features into the form of a pre-existing
structure.

Schema Theory
One of us has recently completed a long-term project about the nature of

problem-solving schemas (Marshall, 1991a; Marshall, 1991b; Marshall, in press
a; Marshall, in press b). The result of that ONR-sponsored research is a new
theory of schema development and implementation. The theory stipulates that
four components of schema knowledge may be identified and assessed. These
are identification knowledge, elaboration knowledge, planning knowledge,
and action knowledge. Each is described briefly below.

The central function of identification knowledge is pattern recognition. It
is this knowledge which contributes to the initial recognition of a situation.
Pattern recognition occurs as a result of the simultaneous cognitive
processing of many features: no single feature serves to trigger the
recognition of a situation. Rather, different configurations of several features
present different patterns, and they must all be recognized as the same basic
situation, depending on the specific characteristics that are noticed.
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Elaboration knowledge enables the construction of an appropriate mental
model of the situation. Here we find not only the general structure of the
situation but also descriptions of its components, i.e., the details about what is
allowable, what is not, and how all of the necessary pieces accommodate each
other. Almost certainly the individual needs to have in memory an example
situation to serve as a baseline analogy against which he or she can match the
current problem components, in order to evaluate the fit of the hypothesized
situation as determined through the constraint knowledge. The general form
of the mental model may come from a specific example or may derive from a
generalized description of a situation.

Planning knowledge contains info.mation about how to identify any
unknown part(s) of the situation and is instrumental in formulating
immediate goals and subgoals. Planning knowledge is frequently very
difficult knowledge for individuals to acquire. It depends greatly on having
the appropriate mental model of the current situation and using that model
comfortably.

Planning knowledge is used to determine which steps to take in solving a
problem. Action knowledge follows up on the plan by carrying out those
steps. As each piece of the plan is completed, the execution knowledge is called
on to address subsequent ones.

Knowledge-Based Artificial Neural Nets
Previous research on artificial neural networks (ANNs) has until recently

paid little attention to existing domain knowledge in determining ANN
topology. Application of domain knowledge has been limited to design and
development of input and output vectors and to construction of training, test,
and validation sets. Shavlik, et al., (Maclin, & Shavlik, 1991; Towell, Craven, &
Shavlik, 1991; Towell, & Shavlik, 1990; Towell, & Shavlik, 1992) have developed
a methodology for using domain knowledge to determine both network
topology and initial weight values. The result is a knowledge-based artificial
neural network (KBANN) which explicitly represents domain theory and starts
with weights significantly better than random.

The KBANN algorithm applies a knowledge base of domain-specific
inference rules to design a network topology and initial weights. Towell
supplies the following example in (Towell, et al., 1991).

A
.f B, Cthen A
.f G, not (F) then B B C.fnot (H) then BA

f1, J then C FG H J K
(a) (b) (c)

Figure 1. Translation of a Domain Theory into a Knowledge-Based Neural
Network (KNN)

Figure l(a) presents an artificial domain theory defining membership in
category A. Figure l(b) is a hierarchical representation of these rules: solid
lines and dotted lines representing necessary and prohibitory dependencies,
respectively. Figure 1(c) represents the resulting KNN. Units X and Y in
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figure l(c) are used in the KBANN algorithm to handle disjunction in the rule
set. Other than these nodes, each unit corresponds to a consequent or an
antecedent in the domain theory. Thick lines represent heavily-weighted
links, corresponding to necessary dependencies expressed in the domain
theory. Dotted lines are prohibitory links, and thin lines are links added to
allow refinement of the domain theory.

It is not necessary for the domain theory to be either fully complete or
correct. It is only required that the domain theory support approximately
correct reasoning. The domain knowledge, once translated into the KNN, will
be modified and made more robust through training of the network. This is
represented in figure 2. After training the network, an improved form of the
domain theory can be formulated from rules extracted from the network.

Initial Domain Final Domain

Rules-to-)k
Network Rule
Translation Extraction

[ nitial Neural 1 Trained Neural
Network Network

Training Examples

Figure 2. KBANN Information Flow

This methodology makes tow assumptions concerning the nature of the
network(Towell, et al., 1991). The first is that the meaning of the units (nodes)
is not significantly shifted or altered by training the net. Thus, domain labels
applied in creation of the network continue to correspond to extracted rules.
The second assumption is that activation values in the trained net are near
either one or zero. The rationale for this assumption is that it allows each
non-input unit to be treated as either a step function or a Boolean rule.

Both of these assumptions are valid within the context of the KBANN models
constructed by Shavlik, et al. (Maclin, et al., 1991; Towell, et al., 1991; Towell, et
al., 1990; Towell, et al., 1992) The first assumption, regarding unit meaning,
will remain valid here. However, the second assumption is no longer valid in
this setting. The AAW domain requires not only real-valued inputs (e.g.,
range, speed, altitude), but real values for the units internal to the net. These
nodes represent pieces of information which take on real values in the domain
being modeled.

Decision-Making Context
Inasmuch as the original events motivating the TADMUS program involved

antiair warfare (AAW), the program was constructed to obtain a thorough
understanding of the tasks required in AAW. Toward that end, several
scenarios were assembled which place a six-member Aegis ship combat
information center (CIC) crew in simulated combat situations. The six
members involved are the Commanding Officer (CO), Tactical Action Officer
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(TAO), Antiair Warfare Coordinator (AAWC), Tactical Information Coordinator
(TIC), Identification Supervisor (IDS), and Electronic Warfare Supervisor
(EWS). The scenarios are presented on a time-step scenario generation facility
known as the Decision-making Evaluation Facility for Tactical Teams (DEFTT).
DEFTT comprises six personal computers on an ethernet local area net driven
by a Hewlett-Packard 9000-series host. System performance at watchstation
consoles (the six personal computers) is similar to that found in the CIC on an
Aegis ship.

For additional information on this facility, see (Hutchins, & Duffy, 1992).

KBANN Model of Decision-Making Schemas
The incorporation of schemas into TADMUS offers a number of advantages.

First, schemas provide a logical framework for analyzing situation recognition
by decision makers. Klein and his associates have already provided important
information concerning the nature of situation assessment. They found that
situation assessment was the result of either feature matching or story
generation. Both of these strategies are easily derived and explained under
schema theory, in that we theorize that each originates from a different aspect
of schema knowledge. On the one hand, feature matching is a natural outcome
of the application of identification knowledge. The co-occurrence of
identifiable features occasions recognition of a situation. On the other hand,
story generation depends primarily on elaboration knowledge and its
associated mental model. When incoming features are insufficient to produce
recognition using identification knowledge alone, a mental model may be
called upon to provide the underpinnings of a story that is consistent with the
observed features and that can supply default characteristics for any missing
data. This mental model is the one associated with the situation best
approximated by the features. The "best guess" from the identification
knowledge allows access to the mental model. Thus, feature matching allows
all possible features to have influence, while story generation looks for
particular features that match the story reflected by the mental model of the
schema and allows inferences about their origins and/or consequences.

An additional advantage of the schema approach is that it allows explicit
computer modeling of each cognitive strategy. The importance of the
modeling is that it allows us to observe the essential components of the
decision and how they are relateL. This, in turn, allows the formation and
analysis of hypotheses concerning the absence of one or more of the
components.

A final advantage is that this method allows us to model the schemas of
many different experts and to synthesize their approaches.

The first step in creation of KBANN models of cognitive schemas is to
generate knowledge networks and cognitive maps representing knowledge
base rules elicited from domain experts. Each knowledge network consists of a
set of nodes, representing distinct pieces of information provided by the
experts, and links connecting the nodes, representing associations between
the pieces of information. A larger cognitive map is produced by connecting
knowledge networks at common nodes an links, as indicated by relationships
specified domain rules elicited from domain experts.

An example of this procedure is provided in figure 3, showing that there
exist relationships between altitude, range, bearing, speed, course, and
location.

141



[Range CourseI

SBearing Location

Figure 3. Example Knowledge Network I

A second knowledge network is represented in figure 4, representing
additional domain rules.

D Speed 

,• 

P

Figure 4. Example Knowledge Network 2

These two example knowledge networks may obviously be linked through
other existing domain rules to produce a larger knowledge network,
representing a cognitive map showing the information paths connecting, or
associations relating, different pieces of information. This is depicted in
figure 5.

SRange Course}:: Pr'~

[Bearing iLocation

Figure 5. Example Cognitive Map

At this point, we should note that these somewhat overly simplistic and
obvious examples are not intended to mislead. They are merely intended to
illustrate the concepts involved in translating domain theories into a KBANN.
In the first place, the examples provided lend themselves well to solution by
known algorithmic methods. We do not propose bypassing or rejecting such
solutions. At the same time, we desire to have the inputs to the net represent
data available to a decision maker as closely as possible. However, this does not
mean that we intend to train a neural net to perform algorithmic tasks.
Instead, at algorithmic nodes we will use activation functions duplicating the
functionality of the algorithm, rather than applying a more traditional
sigmoid (or other) activation function.

Second, the examples provided so far do not demonstrate the complexity of
the domain (AAW). Some idea of the complexity involved is given in figure 6.
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This example illustrates the three components of the complexity of the domain:
multiple information dependencies, Hopfield-like operation in one portion of
the net, and recurrence.

The input layer (the leftmost layer of circular nodes) receives data from
the environment. The first hidden layer (the second layer of circular nodes
from the left) represents information derived or computed from the input
layer. The second hidden layer represents further information computed on
the basis of data input to the net, but not computed directly from input data.
The next layer to the right represents knowledge obtained from the pattern of
activity at lower levels. The pattern of activity output from this layer indicates
the assessment, or diagnosis, of the situation. The single node remaining, to
the right of the situation assessment layer, represents potential courses of
action to be taken on the basis of the situation assessment.

Figure 6. Example Domain Complexity

The second component to be considered is the operation of the situation
assessment layer of nodes. These nodes are depicted in figure 7 (multiple
inputs are represented by single lines for simplicity). In some respects,
operation of this layer resembles a Hopfield net, in that the nodes in figure 7
can be represented as shown in figure 8. Nodes I and 2 in figure 7 are
identical, with activation between them fixed at I. The same is true for nodes 3
and 4.

The purpose of this topology is to model the psychological behavior of
activation spreading within a single conceptual level. In figure 7, nodes I and
2 are directly activated by nodes at lower levels in the net. Nodes 3 and 4 are
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activated not only by themselves, but also by other nodes at the same level
with which they are linked or associated. While this may be similar to a
Hopfield layer, the operation of the net is functionally distinct, in that there is
a single pass through this feed-forward/feed-lateral layer, the weight matrix
is not specified in advance, and the weight matrix is not (necessarily)
symmetric about a 0 diagonal.

Figure 7. Situation Assessment Layer

Figure 8. Hopfield-like Representation of the Situation Assessment Layer

The nature of this layer can be made clear by being concrete with respect
to the concepts embodied by the nodes in this layer. Figure 9 depicts candidate
information nodes in a feed-forward/feed-lateral arrangement. For instance,
it can be clearly seen from this illustration that the capabilities of a particular
contact are associated not only with lower-level information and data
elements, but also with elements within the same level. The pattern of activity
within the net thus represents a pattern of cognitive activity.

[ Cap abaliti es i• Ca'aba liti es;

SAcnationtio Vn

Figure 9. Candidate Feed--Forward/Feed-Lateral Components

The third component of complexity is a requirement to represent time-
dependent relationships among pieces of information. This will be
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accomplished by creating a recurrent net, thus providing a temporal context
for input data from the environment. The recurrent portions of the net are
depicted as square nodes and gray association lines in figure 6.

A fully connected candidate version of the net is depicted in figure 10. In
this model, an assessment of the situation is represented by a pattern of
activity at the output of the feed-forward/feed-lateral layer of the net. The
behavior of the trained net will be said to resemble the feature matching
cognitive strategy when a situation assessment is produced on the basis of
inputs from the environment and existing associations between pieces of
information (weights between nodes). The trained net can be said to be
performing story generation when there is no dominant pattern of activity at
the output of the feed-forward/feed-lateral layer, thus necessitating some
amount of adjustment of the associations between pieces of information
(weights). An incorrect pattern of activity at the output of the feed-
forward/feed-lateral layer does not mean that story generation has been
performed. Such an occasion is identical to misidentification of a situation (on
the basis of pattern recognition or feature matching) on the part of a human
operator. It does mean that the weights should be adjusted, which represents
story generation to explain the situation after the fact. Further, repeated
failure of a dominant pattern to appear at the output of the feed-forward/feed-
lateral layer indicates that the particular situation must be a difficult one for
the net to arrive at a "logical" explanation for the evidence.

These types of behavior can be expected to occur as a result of training the
net on the basis of a small number of domain experts (small training set, This
resembles the brittleness found in expert systems, and severely detracts from a
major advantage of neural nets: their ability to generalize. On the other side
of this same coin is the fact that a net such as this will be constrained by its
size in its ability to store large numbers of patterns. These issues will be
resolved by training the KBANN model as discussed above (in the section titled
Knowledge-Based Artificial Neural Nets), by using multiple domain experts
across multiple tactical scenarios to enlarge the training set, and by
constraining the number of patterns to be stored by using only similar
scenarios within the AAW domain.

Specifically, if we assume E: 0 < e < 1/8, Baum and Hassler (Baum, & Haussler,
1988) have shown that if M >_ o(WLiogE)
random examples can be loaded on a feedforward network of linear threshold
functions with N nodes and W weights, so that at least a fraction

1--
2

of the examples are classified correctly, then the network will correctly
classify a fraction 1 - e of future test examples drawn from the same
distribution with confidence approaching certainty.

In the net depicted in figure 10, with 23 nodes and 129 weights, and
assuming a maximum error of 1/10, the number of training examples required
to achieve this performance is on the order of 3046.

However, the Desired Antecedent Identification (DAID) algorithm,
described in (Towell, & Shavlik, 1990), has been shown to decrease the effort
required to train a KBANN model to approximately 61% in some domains. While
this admittedly may be a best-possible case, application of the algorithm may
significantly reduce training set size requirements.
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cognitive context. As such, the model also presents the possibility to advance
shema theory from the problem solving domain to decision making,

In addition, construction of schema models representing the decision
processes involved in tactical decision making will allow identification of
important features of the environment and determination of their
significance. This is a direct result of the KBANN methodology, and will be
important not only to understanding identification and elaboration
knowledge, but also to construction of a feature library, or set of feature
objects, for the TADMUS decision support system. These feature objects form
the library from which decision makers will be able to construct templates
which may be used for particular situations.
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Abstract

Based on the presumption that certain data observed in high-tech and fast changing battles
do have some intrinsic richness to them that synthetic modelling fails to capture, we
contend that data induction techniques can be successfully used to generalize combat
behaviors. This paper reports the use of neural networks as a computer-based adaptive
induction algorithm to understand and uncover ground combat behaviors. Experiments
with neural networks using tank movement data from the National Training Center (NTC),
Fort Irwin, demonstrate that a two-dimensional cognitive map of closely task organized
units can be derived. The findings seem to confirm our behavioral theory that tank
commanders (i) are missio.-driven, (ii) act as an integral part of their platoor, (iii)
perform sequential decision making to determine their next moves, and (iv) when isolated,
extemporaneous behaviors may take precedence over normative group behavior. Once
trained, a neural-network based model of closely task organized units can be used to
predict the itinerary sequences of a tank given its initial geographic position. The findings
of this study are being used to support the route determination process within the Single
Exercise Analysis Station (SEAS) prototype of the Enhanced Combat Training Center
Analysis and Training Methodology (ECATM) research. The goal of the ECATM project
is to improve the performance of scenario generation for Janus(A).

Keywords: Combat modeling, Knowledge exploration, Inductive reasoning, Applied
Artificial Intelligence, Neural Network, Cognitive Mapping
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1. Introduction

In a high-tech ground battle or battle exercise, it is expected that concepts of

operations, weapons technology and fighting capabilities of both forces, terrain and

weather conditions, individual and collective mental attitudes of engaging troops do

influence troops' behavior - although with a varying degree of intensity. To emulate this

complex reality, combat simulators such as the US Army's Janus(A) combat model are

equipped with algorithms to represent warriors' behavior in typical combats. Assumably,

these algorithms rely on parameters that symbolically represent universal constants of

human behaviors, e.g., the proven fighting doctrines and techniques. Furthermore, to

cover the various battle contexts that might arise, combat simulators also provide

calibration mechanisms for adjusting simulation parameters (for example, see Zyda and

Pratt, 1991; Culpepper, 1992, Branley, 1992). For such a calibration to be effective, it

has to be performed by well-trained and experienced analysts. Such an exercise analysis

is time-consuming, subject to human errors, and runs the risk of being incomplete

(Tversky and Kahneman, 1974), thus reducing the prediction power of combat

simulators.

To circumvent this problem, this paper seeks a behavioral rather than analytical

representation of the tanks in a battle field. Particularly, and as an effort towards using

machine learning techniques for analyzing actual combat behaviors, we propose a neural

network (NN) algorithm to capture the actual selection of routes by tank commanders

when confronted by perpetually novel and evolving combat situations. When the quality

of the data permits, the proposed computer-based adaptive algorithm can next be used to

predict the itinerary sequences of a tank given its first position.

The paper is organized as follows. Section 2 introduces a dynamic perspective

of the route determination process. Sections 3 and 4 present neural networks as an

alternate approach to model closely tasked organizations. Section 5 describes neural

network methodology and experimental procedures. It then proposes a cognitive map as
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an internal representation of tank commanders' behaviors. Summary of findings and

recommendations for future research are provided in Section 6.

2. A Behavioral Model of Closely Task Organized Units

All combat engagement should be the result of a well-defined mission (i.e., tactical

goal expressed by mission statement) and a well-thought action plan (i.e., tactical

actions). According to the U.S. Army doctrine (FM17-15, 1987), a tank commander

should determine his route according to the following major principles:

1. Follow the route determined by the concept of operation;

2. Employ unit movement techniques and drills to balance speed with likelihood of

enemy contact;

3. Use the terrain and natural or man-made cover and concealment to mask his

weapon system from enemy observation.

It is expected that trained troops - while engaging in combat - should adhere as

closely as possible to the concepts of engagement laid out by high-level command.

However, actual combat behaviors might deviate from the planned ones, including

significant departures from company commander's intent and execution plan. For

example, tank commanders are trained that "what can be seen can be killed," so the use

of cover and concealment is key to survival on the modern battlefield. When a tank is

required to cross open areas, speed and overwatch techniques are used. Factors

governing a tank commander's movement include his vehicle's position, route, enemy

positions, and his vulnerability. It can be observed that in actual combat situations, tank

commanders exhibit the following behaviors when they choose a route:
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1. Tank commanders are mission- or goal-oriented. They seek to move as fast as

their mission and battle conditions allow to their assigned destination. Drills are

used to minimize command and control problems inherent in battle.

2. Tank commanders act as an integral part of their platoon. They are trained on

movement techniques and drills which balance speed, use of terrain, and

likelihood of enemy contact. They maintain visual contact with other tanks that

belong to their platoon. As battle progresses, they adjust their position relative

to those of the platoon.

3. Decisions pertaining to route adjustments are sequential. There is an implicit

behavior to reject inconsistent moves that do not support the mission.

4. When all communications are lost, extemporaneous behaviors from isolated

individual tankers may take precedence over normative group behavior.

As discussed earlier, we contend that route determination, more often than not,

is a dynamic and real-time reasoning process with incomplete and quitc possibly inexact

information. As the battle unfolds, each time slice can be perceived by the engaging tank

commander as a life-threatening crisis that forces him to re-evaluate his next movement.

The quality of the sequential and dynamic route determination process depends on a large

number of factors - particularly, his ability to make use of his knowledge and experience

to quickly assess battle situations.

3. Route Determination Paradigms

3.1 Deductive and Inductive Approaches to Route Determination

As a decision problem, a closely tasked organization can be determined by using

one of the following two paradigms. The deductive approach tries to explain phenomena

in t,ýrms of causes and effects. All relevant factors that could lead to the construction of
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a route should be taken into consideration. Once all hypotheses are formulated and

required data gathered, models will be used to predict tank movements. Conversely, the

inductive approach conjectures that, in some complex situations such as the route

determination process, it would be impossible to model all direct causal relationships due

to incomplete, uncertain and dynamic information. To circumvent the difficulty in

applying analytical reasoning using quantitative algorithms, the inductive approach

hypothesizes that there is a lot to learn from those tanks that successfully make it through

to their planned destination. It is believed that "lessons" can be learned by acquiring,

processing and refining "knowledge" from actual routes of the mission-accomplished

tanks. Hunt (1982) observes that humans possess a "natural" form of reasoning that

works surprisingly well in uncertainty. Natural reasoning exploits experience and

analogy to reach plausible conclusions. Patterns of a problem are analyzed and compared

to previous experiences in an attempt to search for similar circumstances and comparable

solutions - in form of "educated guesses". Advocates of this biological approach

recognize a strong connection between the structure of the human brain and the ability

to reason. The remaining part of this paper describes the use of an artificial neural

network (NN) as an analog of the human brain.

3.2 A Brief Description of Neural Networks

A neural network is a system consisting of a number of simple, highly

interconnected homogeneous processing units called neurons (see Figure 1). Each neuron

is a simple computational device that continuously reacts to external inputs. This reactive

behavior can be modeled by relatively simple mathematical functions (For a survey of

mathematical functions for neural nets, see for example Hecht-Nielsen, 1988).

Typically, a neuron receives input signals from other neurons, aggregates these signals

based on an input function, and generates an output signal based on an output or transfer

function. The anterconnections between neurons is represented by a weighted directed

graph, with nodes representing neurons, and links representing connections. The relative
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Figure 1. A Neural Network Architecture for Tank Routes
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importance of the link between two neurons is measured by the weight assigned to that

link. A crucial problem in training neural network is to determine a set of weights

assigned to the connections that best map all input units to their corresponding output

units. In other words, the learning process can be seen as a non-linear optimization

problem that minimizes output differences. There are a number of algorithms that can

be used to minimize output differences. The back propagation technique is presently the

most popular one. Iteratively, it assigns weights to connections, computes the errors

between outputs and real data, propagates these error information back, layer by layer,

from the output units to the input units, and adjusts the weights until errors are

minimized. The back propagation mechanism does not guarantee an optimal solution.

However, various experiments reported by Rumelhart et al. (1986) and by other

researchers (Maren et al., 1990; Freeman, 1991) suggest that the algorithm provides

solutions that are close to the optimal ones.

4. A Neural Network Based Adaptive System for Route Determination

The purpose of this experiment is to develop and calibrate a learning algorithm

for a platoon faced with tank movements with initially unknown and random

consequences. We assume that the tank commander is able to maintain a high level of

situational awareness to continuously adjust his route. However, he is facing a problem

of iterated choice under varying degrees of uncertainty (i.e., fog of war). He chooses

one of many feasible routes on a "trial" basis, observes the consequence(s) or benefit(s)

of that move, and continuously adjusts the tank's direction and speed.

We propose a complex adaptive system for route determination for a tank based

on the analysis of its platoon's behavior. The system is complex in that its behavior (i)

is based on the dynamic movements of individual tanks that belong to a formation; (ii)

exhibits many levels of aggregation and interaction and (iii) is derived from actual route
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data without a detailed knowledge of how each route had been chosen. The system is

also an homuncular one in that it learns only from the past experiences of its own

platoon, and environmental factors - such as concepts of engagement, terrain and weather

conditions, enemy powers, etc. - are somehow embedded in past performances.

Such an adaptive system usually operates far from a global optimum. However,

actual data do have some intrinsic richness to them that synthetic modelling could not

replicate. Also, it would be easier to capture behaviors that inherently embrace analytical

reasoning than to synthetically model the reality that includes, among numerous other

factors, human behaviors.

Furthermore, we believe that by observing victorious tanks that successfully made

it to destination, sample patterns could be molded and memorized for later use. Learning

from these patterns should provide faster and more sensible cues.

Figure 1 describes a simple structure of a neural network designed to learn and

simulate the behavior of tank commanders of a platoon in combat. The network is

defined by (i) the interconnection architecture between the processing elements - i.e.,

timely positions of different tanks of a platoon (ii) a transfer function that determines the

processing rules, and (iii) learning laws that dictate changes in the relative importance

of individual interconnections. Once the system is successfully trained such that it is able

to represent the structure and dynamics of actual tank movements, it can be used to

simulate/predict the route of a tank given its original geographic position.

5. An Experiment with the Neural Network Model for Route

Determination

5.1 Data and Procedures

For the purpose of tlus experiment, the actual routes of eight tanks in a battle

exercise conducted at the National Training Center, Ft. Irwin, were used to train the

network model. The tanks were part of a company whose mission was to reach their
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destination located approximately 9 kilometers North-East of their initial positions. The

platoons moved towards their goal expecting possible contact with the opposing force.

All eight tanks achieved the goal.

To emulate the tank commanders' behavior, a neural net was constructed. It has

2 input nodes representing the geographic (latitude/longitude) coordinates of each of the

8 tanks; 2 output nodes representing the geographic coordinates of the subsequent

position of a typically behaved platoon tank; and 10 hidden neurons impersonating the

internal representation of the perceived environment by the tank commanders. Figure

2 plots the routes of the eight tanks. Each route is represented by forty-three coordinates

taken at five minute intervals, beginning with the point of departure and f'iishing with

the destination point.

The back propagation technique was used as the input/output transfer function to

determine the relative importance of the interconnections between tank coordinates over

time. The network was successful trained to 94% of the training facts after 202 passes,

with a training tolerance of 0. 1. As expected, the network could not be trained with no

tolerance (i.e., training tolerance = 0), because of the noise (stochastic or other) depicted

in the routes; i.e., in some portions of the routes, tanks seemed to move slightly to

directions other than the intended one toward the planned destination. Figure 3 shows

routes simulated by the trained network. The simulated routes retrace with a high level

of accuracy the actual routes.

5.2 Testing of Tank Commanders' Behaviors

The successfully trained network could be used to simulate different tank

movements given the original position. In this section, we attempt to relate the

simulation results of our neural network to the combat behaviors of tank commanders

presented in Section 2.

1. Tank commanders are mission-oriented. Simulated platoon routes do result in a

standard asymptotic pattern converging towards the final destination.
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As illustrated in Figure 3, 7 simulated tanks were positioned at various starting

points. The routes suggested by the trained network mimicked well the actual

counterparts. For example, tanks 35-98 (i.e., with the initial position on the map

at 35km on the East-West axis, and 98km on the North-South axis) and 40-98

started at the same positions of actual tanks. The simulation provided the routes

and the relative speeds to reach destination. Tanks were expected to move

quickly at the beginning of their mission, and then to slow down as enemy contact

could occur in the central valley, and to gradually reach their target.

Of particular interest, we simulated the tanks positioned at locations different than

the ones used to train the network, especially the one situated at the northern

region of the destination zone (55-112). The trained network suggests a short

route that leads directly to the intended goal. To further test the mission-driven

behavior, we purposely initiated two tanks (40-104; 41-104) from a "no-go"

terrain - even though we knew that, in practice, there would be no tanks at that

hilly position. The trained network managed to guide them towards the goal

area. More importantly, it seemed to recognized the terrain condition. Instead

of going straight to the identified goal, the suggested route would take the tank

quickly out of the "suspected obstacle" and guide it through the safe contour.

Eventually, all tanks stopped once they reached the goal. This hints the stability

of the goal state.

2. Tank commanders consider themselves as an integral part of their platoon. To

test the effect of team coordination, we picked a tank positioned approximately 3

miles south of the rear end of the platoon positions. The tank apparently acted

as it recognized that it did not belong to the platoon. It headed for another

direction. Similar positions were tested and similar results were obtained.

Psychologists who used the Hopfield network (an earlier neural network technique

to mimic associative recall) have discovered the same phenomenon (See for

example, Hecht-Nielson, 1989). They would argue that the neural net recognized

that the tank was not in the vicinity of other tanks - a situation it had never
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observed before -, thus decided to generate another goal for that 'exotic" tank.

Suggesting alternate goals is a innovative approach that learning systems could

provide.

3. Tank commanders perform sequential decision making. The trained neural net

simulated the route one five-minute step at a time. After each move, each re-

trained itself, learned from its past, and decided on the next move. The trained

net is feed forward. The output is then fed back as the next input, but no

retraining occurs. (As can be seen in Figure 3, the trained neural net can "look

farther ahead"; a similar phenomenon was discovered by Hutton and Sigillito,

1991). Seemingly, once the system discovered the goal, it tried to accomplish its

mission while minimizing its cognitive effort. Wherever possible, fewer and

faster steps were identified to reach the final target. Eventually, all of them

conversed at the intended target.

4. Tank commanders reject inconsistent movements. In testing the trained network,

we had no problem re-tracing the tanks that were stationed at their intended

starting positions. The simulated routes were determined as expected. We were

not sure, however, how to position the tanks to start at "unconventional" starting

locations and interpret the respective routes suggested by the trained neural net.

In particular, we wanted to train the neural net to recognize "no-go" terrain so

that it can "penalize" all attempts to start a tank at an infeasible position. Note

that this is a theoretical issue for, in reality, no analyst or company commander

would assign tanks at impossible location. A set of feasible routes were

artificially created to emulate the zone of "go" terrain and added to the original

data set (Figure 4). As might be expected, the system was trained with a much

lesser degree of confidence. In the simulation after training, the tanks seemed to

wander around with much less determination than in the net trained with only real

data.
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5.3 A Two-Dimensional Cognitive Map of Closely Tasked Organizations

Cognition is the process by which external or sensory inputs are perceived,

processed, stored, recovered, and used (e.g., Neisser, 1967). In this section, we attempt

to synthesize the findings of our experiment by constructing a cognitive map used by tank

commanders during combat engagement. The cognitive map provides a symbolic

representation of how tank commanders see the battle (see 5.2), yet is capable of using

this internal representation to solve dynamic problems at hand. The internal

representation is a mixture of knowledge (i.e., that which is known to be true about

something), and beliefs (i.e., that which is believed to be true) - a common phenomenon

discovered in cognitive science (Konolidge, 1986; Hintikka, 1962). Figure 5 is a

cognitive map of the tanks used in this experiment, presented on a two-dimensional

geographical space.

The neural network learned that there was a goal/mission - better yet, a stable and

purposeful one. Tanks that are seemingly not part of the mission should look for other

goals (i.e., alternate goals in the map). Environmental factors are embedded in the way

tanks moved. Tank movements and speed reflected the terrain and weather conditions,

as well as enemy forces. Emulation of "known" routes displays a habit formation

characterized by an exacting behavior with repeated exposure. Emulation of "unknown*

routes suggests that new behavior can be "learned' to face with new contexts. The

analysis of these confirmed and revealed behaviors could help discover unapparent

knowledge. As an example, the suggested routes to reach the destination systematically

showed a consistent detour suggesting a forbidden or no-go zone on the left-hand side.

5.4 Discussion

The experiment conducted in this paper suggests that a simple dynamic system

could represent a complex reality such as tank commanders' behaviors in battlefield. For

a short-term, well-focused decision problem such as the process of route determination,

the data induction technique helps understand behaviors without requiring full
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understanding of all behavioral elements involved and their relationships, and the

statistical techniques necessary to analyze these elements. The focus is on analyzing the

patern(s) of the actual data.

The approach taken here is certainly not new, for it is well-known in the fields of

artificial intelligence and psychology. However, the cognitive map derived from neural

network technique proposes an innovative way of analyzing, interpreting tank

commanders' behaviors, and determining sensible tank routes.

From a practical viewpoint, the derivation of a cognitive map using neural

network approach presented in this paper provides a number of benefits. First, NN

techniques use algorithms capable of solving non-linear problems; a typical issue in route

determination. Second, the level of complexity required to determine route with NN is

significantly less than that required by conventional statistical/operations research

approaches. Third, the NN technique is more cost-effective (See for example, AIRMICS

report, June 1991).

Ii is widely acknowledged among AI researchers that neurocomputing attempts

only to provide quick and rapid solutions, and combining the processing and learning

capabilities with conventional analytical tools would provide complementary reasoning

mechanisms to tackle perplexing problems. The proposed technique can be combined

with conventional techniques such as simulation models and rule-based systems to provide

enhanced analytical capabilities for determining troops' movements. Although further

knowledge exploration and testing are required, the findings in this experiment suggest

that the NN model seems to produce results that are at least as robust as those obtained

from conventional techniques. As such, the cognitive map proposed in this paper is a

concrete step towards this effort.
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6. Summary and Recommendations for Future Research

The purpose of this paper was to suggest the use of neural network algorithms as

a data induction technique to reproduce battlefield troop behaviors. The experiment

reported suggests that neural networks as artificial learning agents could be trained from

actual tank commanders' behaviors. This paper also assumes that troop behaviors are

homogeneous in that tank commanders would follow the steps of their victorious peers.

As such, the proposed model does not address issues related to the group/coordination

behaviors of tanks within a platoon. The observed behaviors do reflect movement

techniques specified in FM17-15, as well as those that deviated from the doctrinal level

to account for battle situations. Not only does the learning behavior of the neural net

reproduce fairly well circumstance-dependent platoon behaviors, it also reveals the

possible existence of inconsistent or random behaviors of platoons.

We could claim that the major benefit of such an approach is to furnish predictions

based on actual rather than pure doctrinal behavior; we assume that victorious tank

commanders successfully combined doctrinal strategy with contextual tactics. As such,

the neural net provides a convenient dynamic representation that can be inserted into

theoretical models. Discovery techniques do not make any assumptions regarding the

functional relationships contained within the data. The proposed neural network model

could be used as a benchmark for, and provide insights into, existing NTC data and

Janus(A) scenarios.

The findings reported in this report should be at best considered preliminary

results that call for a more extensive testing of the proposed neural network with various

troop formations in a battle exercise. Tests using more data inputs and various networks

archictectures are being conducted to enhance the accuracy of the simulation. If a neural

model can help reconstruct the behaviors of tanks commanders, it could be used to verify

the theory embedded in combat simulators. Furthermore, it could be used to guide

unmanned autonomous tanks in combat.
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SU'UMMARY OF DISCUSSION GROUPS
Edmund Thomas

Jan Dickieson
Navy Personnel Research and Development Center

Group members included representatives from all services, both researchers and
managers. The manpower and personnel discussion group noted the following:

As the Clinton Administration begins to place increasing emphasis on dual-technolog'
applications. military researchers must be more sensitive to potential commercial
applications for the products of their efforts--

" Neural-network delivery (Implementation) hardware, software

"* Components and-full systems ior general, specialized applications
(motion detection)

"* Linkages to other sensory systems, e.g. optical sensors
"* Embedded machine controllers

"* Network development tools

"* Design and deb.g of applications networks
"° Generate and test complex networks (network compilers and assemblers)
"* Evaluate hardware such as advanced graphics systems tor network display,,

"* Network applications

• Dexclopmcnt involving back-propagation. Hopfield networks
• Detection ofl hidden trends in banking financial data. insurance, investments
• Applications to education and social problems

Therc arc possibilities to be explored where we can model intelligence along the
following lines:

"* An event occurs in the environment
"* The system detects an external event (transducfion) which causes internal change

to the system
* Internal event causes selection and execution of a system response
* Execution of responseo s) causes events (changes) in external environment
• The cycle repeats in an iterative manner

The. ,tore of knowNlcdSe ray I. a,:quired as a 'hard wiring Iform. such as the fixed
structurv or •Iknoýidgc basc:s used in ioday's aoiiiicial -tc igene expert systems or In
earning, in which a system acquires knowledge and is capable of making decisions through

interaction with its environnient.
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One primne difficult for the nilitarv laboratories is "inertia'in the form oi reliance by
sponsors on what is known now (the status quo) and the reluctance to invest in new
technologies. Downsizing of the military may have a siguificant impact on the funds likel

to be invested in new technologies.

The training discussion group noted the following:

Current applications in training include:

"* scenario generation
"• intelligent tutoring

There are a number of research needs:

"* more rigorously controlled testing for modeling of human behavior
"* de,elopment of the capability to better explain network results
"* improvements in the preprocessing of data

There are manv areas where applications of neural networks and related technologies
might prove beneficial. These areas include:

"• small targets that would react to simulation input as humans would react
"• measuring expertise
"* intelligent tutors
"• building model trainees

There vas ,onsensus that the conference fulfilled its original objectives. It %%as belt that
participants are involved in a field where knowledge gains occur rapidly: therefore, the
value and importan,.c of holding an annual meeting which emphasizes behavioral sciences
is tremendous.
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